当前位置: 首页 精选范文 水利水电工程抗震设计规范

水利水电工程抗震设计规范范文

发布时间:2023-10-05 10:23:37

导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的5篇水利水电工程抗震设计规范范例,将为您的写作提供有力的支持和灵感!

篇1

水利水电工程是我国经济建设过程中迅速发展的事业,在我国国民经济发展中占重要作用,设计工作是水利水电工程建设中必不可少的环节。水利水电设计单位的工作主要包括项目的可行性研究、初步设计、施工图设计等,且设计贯穿了水利水电工程整个建设过程。由于水利水电设计单位资质不一,设计人员水平差别较大,在设计过程中会出现各种各样的问题。

一、水利水电工程设计过程中常见的问题

(一)设计人员责任心不强,设计过程偷工减料:水利水电工程设计是一个系统的工程,涉及到不同的学科和各种轻重环节,需要不同专业的设计人员互相配合,协同完成。水利工程设计一般是按照项目建议书、可行性研究、招标设计和施工图设计,水电工程设计一般是按照预可行性研究、可行性研究、招标设计和施工图设计的流程来进行的,在各阶段设计过程中,需要不断完善基础资料,不断优化设计方案,期间包含工程量和投资成本的计算。一些设计人员缺乏较强的责任心,对设计方案直接套用,没有加以优化论证,且不能根据水电工程的需要不断变化方案设计,还有一些设计人员对图纸审核不清楚,造成很多图纸低级错误,有些设计人员对工程整体把握性不强,不能满足实际工程的需要。

(二)水利水电工程设计缺乏质量控制:在目前设计行业中,许多设计院都是追求速度优先,重速度而轻质量,在设计速度和设计质量相矛盾时,往往会优先选择时间。此外,在水利水电设计过程中,存在着评审审核力度不够,有些审核校对流于形式,评审机构也存在权责不明,管理人员的素质不高,没有能力去校核设计图纸。另一个质量控制缺失体现在细节设计完善的安全保障体系,从上至下齐抓共管。建筑企业要考虑施工安全操作与防护需要,按照相关法律法规及工程建设标准进行施工设计,监理单位要严格执法,按法律法规及工程建设标准实施工程的有效监理,一旦发现存在安全事故的隐患必须要求施工单位立即整改,甚至情况严重的令其暂停整顿。

图 1 施工安全保障体系

建筑施工单位企业各项设施与资质都要完备,在施工中的技术装备与专业的技术人员都要达到一定的施工标准,具备能够安全生产的施工条件。总承包单位应负责起施工现场安全生产进行的总体总责,如果实行分包政策,总承包单位要依法把工程分包给其它的建筑单位,这些分包单位要具备安全施工的条件,并在承包合同中明确其安全生产的权利与责任。把安全生产的意识灌输下去,并落到实处。

(三)在水利水电工程设计过程中不重视方案对比:水利水电工程有规模大、施工难度大和工期长等特点,因此,水利水电工程对安全性的要求很高,对工程设计提出了较高的要求,只有不断优化方案,才能在安全上和经济上达到要求。目前,水利水电工程设计过程中,往往对设计方案的可行性和合理性缺乏严格的把关,对设计方案的对比研究不重视,只选择满足一般要求的设计方案即可,而不是最优化的设计,这对以后工程建设的质量和经济性埋下隐患。

(四)与业主和施工单位缺乏沟通,不能精密合作:水利水电设计单位与业主的关系是鱼和水的关系,业主关心的主要是成本和效益的控制,而设计部门对业主的要求缺乏理解,在与业主意见发生分歧时,往往拿规范和条款来搪塞业主,造成关系复杂。而设计单位与施工单位的关系更加密切,设计单位必须时时对施工的过程加以控制和查看,目前设计单位与施工单位缺乏必要的沟通和精诚合作,使施工过程中出现一些本可以避免的由于设计不当或沟通不良引起的问题。

二、提高水利水电工程设计质量的对策分析

(一)严格把关,加强设计质量管理:质量是水利水电工程。的根本,目前设计环节中重速度轻质量的现象普遍存在,从一定程度上消弱了工程建设的实际效益。针对水利水电工程的设计工作,水利水电设计单位要加强质量管理的意识,建立严格的质量管理体系,以质量为本,以进度和信誉谋求发展。对设计过程要严格实行三级校审制,各级人员要认真负责地做好自己职责范围内的工作,全面提高设计方案的整体质量,提供业主满意的最优化设计方案。

(二)不断提高设计人员的业务素质和工作态度:水利水电工程设计质量归根到底在于设计人员的素质,水利水电设计单位要对员工进行终身培训,加强设计人员的设计水平,促进设计人员提出更多的设计理念,并按时对设计人员进行考核,成绩直接与绩效挂钩。还要多方位引进高、精、尖的技术人才,在技术含量要求高,结构复杂的环节加以把关,进而带动整个团队的设计水平的提高。另一方面,端正设计人员的工作态度,制定规章制度并严格执行,防止设计人员生搬硬套,抱着设计出最优化方案的心态去设计工程图纸。

(三)加强设计前期的资料收集工作,保证设计方案符合工程实际:做好设计的前期工作是做出优秀设计的前提,设计单位要积极引进和采用技术先进、性能优良的勘察设备,配备优秀的专业工程技术人员,从工程实际情况出发,着重搞好前期的勘察工作。要广泛搜集和获取相关的地质、水文、资源及环保等第一手可靠的资料,然后据此做出结构计算,择优选择和制定最为合理的设计方案,保证水工建筑物、水利机械、电气等达到配套合理、完善,使工程无论从等别、防洪能力上,还是抗震设计烈度方面,以及建成后的运行、管理上,都能达到相关设计规范的要求,保证工程效益的有效发挥。

篇2

颗粒分析试验是测定干土中各种粒组所占该土总质量占百分数的方法,确定颗粒组分,供土的分类及概略判定土的工程性质及选料之用,是地质勘察中的一项基础性的工作,工作程序相对简单,工作成果实用而有效,在工程实践中参与度很高,体现到工程中的方方面面,下面从十四个方面对其重要性进行阐述。

一)颗粒分析的试验方法

依据土体的颗粒组成不同,在颗粒分析中采用的方法不同,可分为:筛析法(>0.075mm的土)、密度计法(

二)土体岩性定名

依据土体的粒径组成,当粒径大于2mm的颗粒质量超过总质量的50%的土,定名为碎石土;粒径大于2mm 的颗粒质量不超过总质量的50%,粒径大于0.075mm 的颗粒质量超过总质量50%的土,应定名为砂土;粒径大于0.075mm 的颗粒质量不超过总质量的50%,且塑性指数等于或小于10 的土,应定名为粉土;结合液塑限的成果可能定名粘性土:当塑性指数(Ip)介于10(不含)~17(含)的土定名为粉质粘土,Ip大于17的定名为粘土。

此外除按颗粒级配和塑性指数定名外,土的综合定名还应有相关的规定。

三)多年冻土

多年冻土是一种特殊性土,在高寒地区普遍存在,是不可回避的一个问题。

土体的颗粒组成不同,岩性不同,冻土的分类、冻胀和融沉分级也不同,总含水量不同,其平均融沉系数、融沉等级、融沉类别不同,最终确定的冻土类型也不同,其物理力学性质的表现也不同,对不同专业的勘察要求也各有侧重,对其上的不同各类的建筑物也应根据行业特点区别对待。

四)冻胀性评价

水利水电工程勘察中

工民建勘察中岩性为碎(卵)石、砾、粗、中砂(

粒径小于0.005mm的颗粒含量大于60%时为不冻胀;碎石类土当充填物大于总质量的40%时,冻胀性按充填物土的类别进行判定;碎石土、砾砂、粗砂、中砂(

五)原位测试仪器的选择

有些原位测试仪器在适用上条件宽松,只要地点合适,各种土层均可进行;有些仪器适用条件比较苛刻,有的适用于粗粒土而不适用于细粒土,如动探触探试验;有的适用于细粒土而不适用于粗粒土,如标准贯入试验等,特别是十字板剪切试验、静力触探试验、螺旋板载荷试验在地下水位高,土层饱水的细粒土层中更能发挥其独特的作用。

六)土的腐蚀性评价

由于粗粒土的具大孔隙性、强透水性强,毛细水上升高度小,不利于盐份的富集,一般腐蚀性较小,在工民建的勘察中在有经验的地区,一般不取样分析评价,认为其腐蚀性微;细粒土恰恰相反应取样分析评价。

七)天然密度测定

粗粒土的天然密度采用灌水法或灌砂法;细粒土的测定采用环刀法。

八)土体状态的确定标准

碎石土的密实度采用重型动力触探试验确定其状态为松散、稍密、中密、密实等;砂土的密实度采用标准贯入试验确定其状态为松散、稍密、中密、密实等;粘性土的状态采用液性指数确定为坚硬、硬塑、可塑、软塑、流塑等。

九)土的类型划分和剪切波速范围

土体的类型和土体的剪切波速在没有进行波速测试时,可通过土体的颗粒分析,确定其定名,在建筑物等级为丙类、丁类时可采用规范推荐的数据进行确定,进而确定场地土类型和场地类别,为设计提供地质依据。

十)地基土抗震承载力调整系数

依据不同的岩性,在进行建筑物设计时,在进行非状工况计算时,需按照岩土名称和性状确定地基土体的抗震承载力调整系数。

十一)地震液化评价

地震液化的评价决定地震发生时建筑物的安全,其危害性和破坏性也是最大的,应当在工程勘察和设计中引起高度重视,在从国家标准和行业标准两个方面进行表述。

(一)国标《建筑抗震设计规范》(GB50011―2010)的判定方法

饱和的砂土或粉土(不含黄土),在初判时可依据土体中粘粒含量和地震设防烈度判定是否有液化的可能,对可能发生液化的土体依据标准贯入锤击数和颗粒组成计算临界锤击数,通过与实际锤击数的比较判定其注化的可能性,并可进一步计算钻孔的液化指数,划分地基的液化等级,并采取对应的抗液化处理。

(二)《水利水电工程地质勘察规范》(GB50487-2008)判定方法

1)土的液化判定工作可分初判和复判两个阶段。在初判中需通过土体级配曲线确定大于5mm、小于0.005mm的粒径组含量,再结合地震设防烈度判定其液化的可能性;在复判中也需要确定土体的粘粒含量,依据相关公式计算其临界值,再做出最终的判定。

十二)渗透变形判定(多用于水利水电专业)

土的渗透变形特征应根据土的颗粒组成、密度和结构状态等因素综合分析确定,宜分为流土、管涌、接触冲刷、接触流失四种。其中的不均匀系数、粗细颗粒的区分粒径、接触冲刷中的D10、d10、接触流失中:不均匀系数介于0~5(含)时的D15、d85,不均匀介于0~10(含)时的D20、d70、临界水力比降的确定都是依据土体的级配曲线。

十三)土体渗透系数的粗略估算

在《水利水电工程地质勘察规范》(GB50287-99)中依据土体的级配曲线提供了一个近似计算土体渗透系数的公式: ,这个公式表明土体的渗透性是其固有的性质,主要是由土体的内部结构决定的(此方法在新版的规范中已删除,但可作参考)。

十四)天然建筑材料

在《水利水电工程天然建筑材料勘察规程》第二章“术语、符号”中,提出24个术语,多数都是与土体的颗粒分析有关的,在天然建筑材料,更显出颗粒分析的份量了。

在本规范中按砂砾料、土料、碎(砾)石类土料、槽孔固壁土料、块石料五大类;不同类型的料的取样要求不一样(数量、规格等),取样数量不一样、取样重量不一样,试验项目也不一样,在记录上要求所记的内容也不一样,评价的内容和方法也不一样。

参考文献

1)《岩土工程勘察规范》

2)《建筑地基基础设计规范》

3)《土工试验方法标准》

4)《建筑抗震设计规范》

5)《水利水电工程地质勘察规范》

篇3

中图分类号:TV 文献标识码:A

引言

对于水利水电工程的建设,设计部门在整个建设工程中起着重要的作用。无论是项目的规划、建设实施的可行性、还是施工的设计等等都是设计部门的工作任务,所以其工作的性质是整个工程建设的重中之重。

一、中小型水利水电工程设计中常见问题

1、前期规划片面

中小型水利水电工程的设计必须以工程的项目所在地为依据,全面深入的考察项目的地形构造、水源情况、矿产资源、生物资源、周边环境等地形、地貌特征,系统的罗列各项数据,并进行分析汇总,总结项目的基本地理环境及周边的人文环境是否适合建设工程。有些设计单位,为了降低成本,减少人力、物力、财力对项目的全面深入考察,没有仔细收集项目资料,参照其他工程的设计,导致工程的设计方案不够全面、系统,有时甚至根本不适合项目地使用。导致工程的选址、规划、结构形式、运行机制与实际情况严重不符,造成严重的后果,所以,对项目的前期工作必须全面、客观,符合项目地的实际情况。

很多设计部门为了节约设计的开支费用,对地形的勘察程序简化,有的设计单位只对工程地质进行表面描述,没有实际对地质进行深入的勘察。有的设计单位对地质进行了勘探,但勘探的布点稀少,不按规范进行钻探,也没有采取足够的坑探、平洞等勘探手段辅助勘察,这样的勘察根本不能对地质构造进行充分的了解。这样就导致了工程坝址的选定、施工的方案不够合理。在施工过程中,发现报告中的地形、地质资料不符合施工地的实际情况,只能对工程进行补勘及变更设计,一方面,对建设资金造成大量的浪费,另一方面,建造的难度增加,严重影响了工程的投入运行,不能及时发挥工程的效益。

2、设计人员素质不高

水利水电工程的设计需要不同专业的设计技术人员沟通协商,把不同方面的设计有效的衔接。水工建造、管道路线、电网铺设等需要各方面的专业人员通过精心设计,合理配置,形成一套完整合理的设计方案,如果各个专业的设计没有有效的衔接,就会导致设计整体不完善、不合理,造成重复的工程量。在管道、线路的铺设过程中,如果设计深度不够,就会造成人力、物力、财力的极大浪费,甚至,还为工程将来的投入使用埋下隐患。有的设计人员缺乏统一、宏观的设计理念,在设计时只对单个项目的设计,不考虑各个项目之间的联系,往往导致前期完成的项目与后期工程项目不能配套使用,后期工程项目不能合理使用,受到前期工程的制约,导致整个工程系统缺乏统一的运行机制,没有形成科学合理的工程体系。

3、设计脱离工程实际

在工程的设计中,需要对工程项目按规程规范进行精确计算,然后根据计算的数据设计工程项目。在实际设计过程中,设计人员只采用简单的、粗略的计算,则会导致工程的设计与实际情况严重不符,将出现大坝渗水、基础漏水,混凝土裂缝、墙面扭曲等现象,设计直接影响工程的安全性,必须进行设计变更,造成资金的大量浪费。

在设计过程中,工程的设计报告与图纸脱节,设计报告不能有效的指导施工人员运用图纸进行施工。设计图的细节不够清晰、标注错误、无剖面等现象随处可见,使施工人员无从下手,严重阻碍了工程的进度。有时,设计报告也不够完整,对关键技术的论述模糊不清,设备安装的方法、检测指标都没有详细的论述,不能成为施工的技术性指导文件。

设计施工人员只注重工程的理论设计,不考虑工程的施工难度,对于中小型水利水电工程来说,如果在设计时采用只满足理论的工艺,脱离工程项目的实际需求,造成工期的延长,同时,在工程的投入使用及设备的维修管理时,需要消耗更大的费用,造成资金的浪费。

二、加强中小型水利水电工程设计的对策

1、提高设计水平

设计时所收集的资料不充分的问题要从根本上进行处理。根本原因是相关人员缺乏足够的专业知识,错误的估计了水利工程中容易出现的问题。在没有准备的情况下,一旦出现设计的难题将很难解决,至少在短期内很难解决。首先,要与国内著名的图书馆和相关高校建立合作机制,这样可以利用图书馆中的馆藏图书,更重要的是可以搜索相关学术成果、期刊、论文。这相当于在全世界范围内搜索材料进行准备。另一方面还要加强设计人员的科学素养和对规范的掌握程度。尽量的避免主观臆断,要根据科学的手段进行分析后,整理出一整套适合的材料。其中最重要的是在水利设施建设的地点的重要参数的收集要长用科学的方法,要结合试验的理论来进行现场资料的收集。只有这样,才能拿到准确的实际资料,配合着对相关文献的查询和总结前人的经验,结合科学技术中的世界上最新研究成果,对水利设施的设计进行合力计算和优化设计。

2、提高勘察水平

在实地勘察时,要尽量让操作熟练的工作人员进行,并且在测量时要严格的按照操作流程进行每一步操作。各级设计部门要积极引进和采用技术先进、性能优良的勘察设备,配备优秀的专业工程技术人员,着重搞好前期的勘察和勘测工作。在设备上要提供与操作人员水平相当的设备。落后的设备准确度较低,很难实现预期的效果。而过于先进的设备虽然结合了更多的技术手段,但是可能与操作人员的技术水平脱节。要查用操作人员最熟悉最熟练的勘测手段,进行现场勘测。同时要保证各项水工建筑结构物、水利电气、水利机械等达到配套、合理、系统、完善,使工程无论是在等级上还是防洪能力上,还是抗震设计烈度方面,以及建成后的水利运行、工程管理上,都能达到相关设计规范的要求,进一步保证工程项目效益的有效发挥。

3、注重技术创新

水利水电工程设计是一项需要较高的技术支持的工作,相关的人员要加强自身对设计的整体把握,并且要随着时代不断发展,要和世界先进的技术拉近差距。

3.1 要积极学习国内和世界范围内的水利建设的新技术和新工艺,以及新型材料的应用。并且要组织操作人员定期的进行业务培训和业务交流,要做到技术与时俱进,及时的更新设计思想,并应用到实际工作中。

3.2 要注重设计部门高、精、尖的技术人才的引进和培养,一起通过高、精、尖技术人才在工程中的作用充分发挥,帮助各部门解决实际的技术难题,并完成技术含量高、设计结构更复杂的水利项目。

3.3 每一个设计工作的相关人员,要注重日常相关工程资料的整理和积累,要建立属于自己的信息资源库。在实际的应用中才能拿出对于问题有针对性的解决方案,另一方面也便于自身业务水平的发展和提高。

结束语

综上所述,影响工程设计的质量的因素很多,在中小型水利水电工程设计中,相关的设计单位和人员应该提高认识,积极采取措施避免以上常见问题,并且严格遵守规范,不断完善工程设计中的不足,提高工程设计质量,提出科学、合理、符合工程实际、满足技术要求的设计方案,从而保证水电站建设的顺利、安全进行。

参考文献

篇4

1、引言

随着社会经济的快速发展,我国水利水电工程也取得巨大进步,尤其是近些年我国西部建设了许多大型水利水电工程,处于强震区的工程必须要考虑抗震设计,在水工建筑物抗震设计方面也积累一定工程实践经验,也出现了很多新的问题。自1997年以来颁布了《水工建筑物抗震设计规范》,为水工建筑物抗震提供相关标准和规范,但是我国对于水工混凝土结构抗震方面依然存在诸多关键技术无法突破的难题,对水工混凝土结构抗震进行研究和探讨具有重要意义。

2、水工混凝土结构抗震设计

目前而言,有关水工混凝土结构抗震研究主要集中在以下几个方面的问题:

2.1设计地震烈度

有关设计地震烈度,有两种看法:一是地震荷载是一种常态,需要对水工结构安全进行复核,对水工混凝土坝要根据地面加速度为0.1g进行校核;二是认为混凝土动态抗拉、抗压强度在增大的前提下,地震发生地基吸收能量,所以混凝土坝的实际抗震能力不必按照线性弹性分析的结果进行,因此也几乎没有多大破坏力。比如美国下水晶泉曾发生8.3级大地震,但是坝体几乎没有受到任何破坏。经过分析和计算认为,拱坝的抗震性能最佳,其次是重力坝,然后是支墩坝。

然后对分区地震烈度进行划定,按照地区历史地震情况以及地址构造等,对未来有可能发生的最大地震进行划分;最后进行地震应力分析,需要借助计算机对参数进行计算,一些复杂的结构进行简化,不仅要对地震资料进行分析,而且要选择科学合理的计算方法,并且对材料动力特性进行研究。

2.2水库诱发地震

水工混凝土进行建设时需要对诱发地震的可能性进行仔细研究,假如附近曾经发生地震,那么水库蓄水后地震活动的频度和烈度要高于正常水平,震源也在附近。地震活动和水库的水位存在一定关系,如果水库的深度大于一百米时则诱发地震比较显著,水位增加速度和持续时间都是重要影响因素。

2.3混凝土动力特点

混凝土强度和加载速度有很大的关系,根据变形率进行计算,段十年内发生剧烈应力变化,强度会有明显提高。加载速度是1s或者是经过几个小时的破坏,混凝土强度相差30%,混凝土短期抗压强度得到提升,这一点和其塑性变形有关。正常而言,混凝土强度和时间呈现出线性关系。相关设计规范中标明水工抗震规范影响系数可以取值为1,对结构强度进行计算,水工混凝土结构的抗拉强度安全系数可以取值稍大于1,因为其中需要考虑到动力荷载作用。

2.4结构模型试验

模型比例大部分情况选择1:100,模型上选择激振器进行激振,也可以将其放置在振动台上,如果上游有水库,则模拟时水库长度必须要是其深度的3倍以上,模型材料容重要求和实际情况一致,容重是2.4t/m?,模型和原型的应变比例,模型材料是石膏,性能比较可靠,其变形接近混凝土,便于加工。

2.5原型振动试验

一般而言,混凝土水工结构抗震设计研究需要进行原型振动试验,以此掌握水工混凝土结构的自振特性,比如振型、频率以及阻尼比等,然后和工程数据进行复核。激振方式包括强迫力激振和自由衰减振动激振。

2.6混凝土重力坝自振周期进行估算

一般而言,混凝土重力坝自振周期是水工混凝土结构抗震研究的前提,有关混凝土重力坝自振周期计算公式有以下几种:

(1)克希荷夫公式

比如,湖南镇水电站混凝土梯形坝的自振周期进行计算,其参数是H=130m,B=115m, =2.4t/m?,E=2500000t/O,计算 为0.295s。经过模拟实验结果为0.293s,结果比较接近。

3、水工混凝土结构抗震研究进展

水工混凝土结构抗震研究涉及诸多学科,相关理论、公式、计算方法、仪器设备等都是以工程实践理论为前提进行集成再创新,目前而言水工混凝土结构抗震主要集中在地震动输入、结构地震响应以及结构抗力三个方面。

3.1 地震动输入

水工混凝土结构抗震中地震动输入是基础研究工作,具体包括大坝抗震设防水准框架进行制定、场址地震动参数进行确定、坝址地震动输入机制。其中,大坝抗震设防水准框架的制定涉及到概率论方法,结合我国实际国情,以及水工混凝土结构特点,建立和完善的相关标准框架体系,其中需要考虑接近断裂大震、水库地震等问题。

3.2 结构地震响应

结构地震响应是水工混凝土结构抗震研究的重中之重,一般而言是通过理论分析和公式计算,然而要考虑到的是地震和水工混凝土结构过于复杂,尽量利用室内外试验,或者是现场实测进行校核和验证,还可以通过震害工程实例,以及强震观测记录进行校验。其中,涉及到结构抗震动力进行分析;结构抗震的动力模型试验;现场测振试验以及地震监测;水工抗震设计规范等。

3.3 大坝混凝土动态抗力

水工混凝土结构抗震在大坝混凝土动态抗力方面的研究相对而言比较少,这是研究中较少覆盖的一个方向。水工混凝土结构动态抗力研究主要集中在大坝混凝土全级配大试件动态抗折试验、大坝混凝土动态损伤机理、大坝混凝土三维动态细观力学分析、CT技术应用等方面。

4、结语

总而言之,我国对水工混凝土结构抗震研究还存在诸多问题,一方面缺乏工程实践案例,另一方面一些关键技术也难以攻克,在目前抗震研究追不上工程建设规模和发展的前提下,水利工程建设依然存在较高的风险。所以,我们要加大对重大工程抗震安全保障的应对,认真分析过去在水工混凝土结构抗震研究中取得的经验,总结经验、克服障碍,为抗震安全保障提供支持和帮助。

参考文献

[1] 张琳琳,顾冲时,王嘉琪.重大水工混凝土结构健康综合诊断结构体系研究[J].红水河. 2003(04)

[2] 党伟,杨宏伟,贾桂琴.水工混凝土结构的耐久性问题[J].河南水利与南水北调. 2009(07)

[3] 郑永杰,辛宝美,蒋殿顺.水工混凝土结构裂缝成因预防和处理的一般方法[J].内蒙古水利. 2005(02)

[4] 陈玲,张桂花,关万武,孙淑侠.水工混凝土结构耐久性研究[J].水资源与水工程学报. 2006(04)

[5] 李雪红,叶燕华.水工混凝土结构裂缝主要成因挖掘的粗集方法[J].东南大学学报(自然科学版). 2006(S2)

篇5

中图分类号:TV641文献标识码:A文章编号:1009-2374(2010)03-0030-03

随着计算机的飞速发展和广泛应用以及有限元理论的日益完善,ANSYS等大型通用有限元分析软件被日益广泛地应用到水利水电工程结构设计中。ANSYS软件作为一个大型通用有限元分析软件,可以对结构在各种外荷载条件下的受力、变形、稳定性及各种动力特性做出全面分析。

根据《水工建筑物抗震设计规范》 (DL5073-2000) ,设计烈度为7、8、9度的1、2、3级的混凝土重力坝需要进行抗震设计。

云南省水利资源丰富,是水利大省,同时,也是地震多发区,很多电站的坝址区设计地震烈度≥7度,因而在水利工程设计中,抗震设计是不可忽视的部分。

一、结构的地震作用效应的计算方法

目前结构抗震设计规范所提到的结构的地震作用效应的计算方法有动力法和拟静力法两类。其中动力计算方法又包括:底部剪力法、振型分解反应谱法及时程动力分析法。

时程动力分析法是将表示地面加速度的地震波a0(t)直接输入结构的动力方程,求解结构振动时的位移x(t)。时程动力分析法在理论上比较精确,但也比较复杂。特别是目前结构抗震设计规范未对时程动力分析法所得结果的处理以及设计标准做详细规定。

振型分解反应谱法及底部剪力法都是动力法中的反应谱法,即按标准反应谱、考虑地震时的地面加速度a0(t)所引起的结构自身的加速度动力反应,并以作用在结构上的地震惯性力来表示,把动力问题转化为静力问题处理。振型分解反应谱法是综合考虑了结构在不同振型时的地震反应,而底部剪力法则只考虑结构的第一振型(基本振型)时的反应,是一种简化计算方法。

拟静力法是将结构的重力作用、设计地震加速度与重力加速度的比值、给定的动态分布系数三者乘积作为设计地震力的静力分析方法。在确定地震作用后,将其作为静力荷载施加于建筑结构,与静力荷载作用的情况一样进行结构分析。

根据《水工建筑物抗震设计规范》 (DL5073-2000) ,工程抗震设防类别为甲类(场地基本烈度≥6度的1类壅水建筑物)时,地震作用效应的计算需采用动力法。目前采用振型分解反应谱法进行水工建筑物抗震设计相对简单易行,是采用最多的动力计算方法。

二、振型分解反应谱法

根据结构动力学的基本求解理论可得多自由度体系的弹性动力方程为:

(1)

对于无阻尼外荷载的自由振动问题,阻尼项和外力均为0,于是,动力方程改为:

(2)

由于弹性体的自由振动总可以分解为一系列的简谐振动的叠加,为了确定弹性体的自由振动的固有频率及相应的振型,可以考虑如下的简谐振动的解:

(3)

其中{g}是位移{x(t)}的振幅列向量,它与时间t无关,?棕是固有频率,将公式(3)代入公式(2)可得:

(4)

于是,要找如公式(4)的简谐振动就要转为?棕2和非零向量{g},使其满足公式(2)。这就是广义特征值问题。求得的?棕就是振动的固有频率,{g}就是给出的相应的振型。

三、振型分解反应谱法在的ANSYS中的实现

根据《水工建筑物抗震设计规范》(DL5073-2000),除了窄河谷中的土石坝和横缝经过灌浆的重力坝外,重力坝、水闸、土石坝均可取单位宽度或单个坝(闸)段进行抗震计算。本文以某混凝土重力坝非溢流坝段典型剖面为例,介绍混凝土重力坝振型分解反应谱平面有限元计算过程。本工程基本设计烈度为8度,设计地震加速度为0.2g(重力加速度g=9.81m/s2)。

(一)模型及边界条件

在ANSYS软件中,采用振型分解反应谱法进行结构的地震计算时,所有材料的非线性特性均失效,因而对于平面分析,可采用Plan42单元进行计算;另外,除材料自重外,所有外加荷载均不参与计算,因而,计算模型不施加外荷载。

材料参数:采用线弹性模型,需要输入坝体混凝土及基岩的容重和弹性模量,在此,坝体混凝土的动态弹性模量采用静态弹性模量的1.3倍,而基岩的动态弹性模量与静态弹性模量相同。

计算范围:取坝体上、下游以及底面基岩均取约1.5倍坝高进行计算,基岩仅考虑弹性,因而采用无质量单元。

边界约束条件:基岩上下游边界和底部边界均施加法向约束。

单元类型:坝体采用平面四节点单元(plane42),考虑坝体纵缝不进行灌浆,坝体按平面应力问题进行计算,基岩按平面应变问题进行计算;考虑坝体上游面的动水压力,采用单质点质量单元(mass21)。

(二)模态分析

根据《水工建筑物抗震设计规范》(DL5073-2000),一般情况下,水工建筑物可只考虑水平向地震作用,设计烈度为8、9度的1、2级重力坝等壅水建筑物应同时计入水平向和竖向地震作用。当同时计算水平向和竖向地震作用效应时,总的地震作用效应也可将竖向地震作用效益乘以0.5的遇合系数后与水平向地震作用效应直接相加。

1.各阶振型和频率计算。采用ANSYS计算软件中的模态分析选项:antype,modal。用子空间法提取前10节模态:modopt,subsp,10。求解后用ansys后处理模块post1即可得出前十阶振型和频率。

考虑水平向地震时,地震加速度采用设计地震加速度ah,用考虑上游面动水压力的计算模型(满库模型)进行模态分析,提取前十阶振型和各阶频率。

考虑竖向地震时,地震加速度采用设计地震加速度的2/3,即av=2an/3,用不考虑上游面动水压力的计算模型(空库模型)进行模态分析,提取前十阶振型和各阶频率。

2.反应谱谱值计算。《水工建筑物抗震设计规范》(DL5073-2000)给出的设计反应谱见图1:

其中,对于混凝土重力坝,?茁max=2.0,一类场地Tg=0.2s。

由上节所述反应谱计算所得各阶振型求出前十阶周期,查设计反应谱,得出各阶反应谱值,作为下一阶段反应谱分析的输入数据。

本算例典型坝段各阶自振频率和反应谱值见表1:

(三)反应谱分析及模态扩展

分别将水平地震作用和竖向地震作用下模态分析得出的坝体各阶频率和反应谱谱值输入,进行反应谱分析,并进行10阶模态扩展,得出各阶反应谱分析结果。

设置分析类型为反应谱分析:antype,spectr。

设置地震作用方向:sed,x,y,z;其中x,y,z为分析开关,考虑该方向的地震作用时设置为1,不考虑该方向地震作用时设置为0。

输入各阶频率:Freq,f1,f2,……,f9;Freq,f10;其中f1~f10为坝体第1~第10阶频率。

输入各阶频率所对应的反应谱谱值:Sv,0.05,d1,d2,……,d9;Sv,0.05,d10,其中d1~d10为坝体第1~第10阶反应谱谱值。

进行模态扩展:expass,on;mxpand,10,yes,0.005

(四)合并模态

对各阶模态响应进行平方根组合,得到反应谱分析结果。将竖向地震作用的反应谱分析结果乘以0.5,并与水平地震作用叠加,得坝体动力分析结果。

用平方根法合并模态:srss,0.05,disp。

求解后读取模态合并结果文件file.mcom。即可得水平向或竖向的反应谱分析结果,又post1后处理模块可得出坝体各节点应力状态及位移状态。

四、计算结果的处理

由于任何水工结构都不可能仅受地震荷载作用,要完整考虑坝体的受力状态,通常考虑正常运行工况与地震工况的组合。由于振型分解反应谱法计算所得结果仅为坝体内某点在相应地震烈度的作用下的最大可能应力及位移,不计应力和位移的方向,因而需考虑动、静应力及位移的叠加。本文介绍了目前常用的最不利组合原则和全拉全压原则两种目前最常用的原则。

(一)最不利组合原则

按最不利组合原则组合静态反应和动态反应得到综合反应。

综合位移组合原则为:对于坝体同一结点,如果x轴方向(y轴方向和z轴方向相同)静态位移为正值时,就把x轴方向动态位移作为正值与静态位移进行叠加;如果x轴方向(y轴方向和z轴方向相同)静态位移为负值,就把x轴方向动态位移作为负值与静态位移进行叠加。静动态荷载作用下的综合位移,按照此原则进行组合最为不利。

综合应力组合原则为:对于坝体同一结点,如果静态某一应力分量为负时,该部位的动态相应应力分量数值小于其静态应力分量的绝对值时,把动态相应应力分量作为负值与静态应力分量进行叠加;其他条件下(包括静态某一应力分量为负时,该部位的动态相应应力分量数值大于其静态应力分量的绝对值和静态应力分量为正时两种情况)把动态应力分量作为正值与相应静态应力分量进行叠加。静、动态荷载作用下的综合应力按照上述原则进行组合对坝体的抗拉和抗压强队安全最为不利,在此称应力组合原则为“强度最不利应力叠加原则”。

最不利组合原则考虑了位移和强度在不同情况下使用不同的组合原则,理论上比较科学。但采用此方法需对结构每个节点的各方向应力及各方向位移一一进行判断,分别计算,计算较为复杂。

(二)全拉全压原则

全拉全压原则先将所用应力均看作是正值(拉)与静力状态下各节点的应力进行迭加,得出静+动的计算结果,然后将所有应力均看作是负值(压),与静力状态下的各结点应力进行迭加,得出静-动的计算结果,将两套迭加成果均列出来进行分析比较。同样,位移也采用同样的方法进行处理。

全拉全压原则计算时只需将反应谱计算结果与静力状态计算结果直接计算较为简便。

图2为由全拉全压法求得的坝体竖向位移等值线图,图3为坝体第一主应力等值线图。

五、结语

由于地震作用的复杂性和不可预见性,地震高烈度区混凝土重力坝的抗震设计、计算方法仍在实践中不断发展。作为设计人员,往往希望采用相对简单易行、计算成果可以指导设计的计算方法。本文简要介绍了混凝土重力坝抗震动力分析中最常用的动力计算方法――振型分解反应谱法的分析过程,并以某混凝土重力坝典型非溢流坝段为例,介绍了该计算方法在大型有限元软件ANSYS中的应用,介绍了计算结果的两种常用处理方法,对一般大、中型混凝土重力坝进行快速抗震分析有一定的参考价值。

参考文献

[1]中华人民共和国电力行业标准.水工建筑物抗震设计规范(DL 5073-2000)[S].北京:水利水电出版社,2000.

友情链接