当前位置: 首页 精选范文 初中数学解题规律

初中数学解题规律范文

发布时间:2023-10-07 15:42:49

导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的5篇初中数学解题规律范例,将为您的写作提供有力的支持和灵感!

初中数学解题规律

篇1

规律探索型问题是中考中的必考知识点,我们把规律探索型问题也称为归纳猜想型问题,其特点是这样的:给出一组具有某种特定关系的数、式、图形;或是给出与图形有关的操作变化过程;或是给出某一具体的问题情境,要求通过观察分析推理,探究其中蕴含的规律,进而归纳或猜想出一般性的结论.规律探索型问题包括三类问题:数字类规律探索问题、图形类规律探索问题、点的坐标类规律探索问题.

一、数字类规律探索问题

1.解题思路

解答数字类规律探索问题,应在读懂题意、领会问题实质的前提下进行,或分类归纳,或整体归纳,得出的规律要具有一般性,而不是一些只适合于部分数据的“规律”.

2.例题展示

3.例题分析

二、图形类规律探索问题

1.解题思路

解答图形类规律探索问题,要注意分析图形特征和图形变换规律,一要合理猜想,二要加以实际验证.

2.例题展示

3.例题分析

针对几何图形的规律探索题,首先要仔细观察、分析图形,从中发现图形的变化特点,再将图形的变化以数或式的形式表示出来,从而得出图形的变化规律.如果图形的变化具有周期性,就要先确定循环周期及一个循环周期内图形的变化特点,然后用所求总数除以循环周期,得到余数,进而使所求问题得以解决.

本题就是一个典型的规律性问题,由AB为边长为2的等边三角形ABC的高,利用三线合一得到B为BC的中点,求出BB的长,利用勾股定理求出AB的长,进而求出S,同理求出S,依此类推,得到S.

参考文献:

篇2

例1 按下图的方式,用火柴棒搭三角形.

搭1个三角形需要火柴棒_____根;

搭2个三角形需要火柴棒_____根;

搭3个三角形需要火柴棒_____根;

搭10个三角形需要火柴棒_____根;

搭100个三角形需要火柴棒_____根.

解法一 根据图形可知:前三个空应填3,5,7,因为搭第1个三角形需要3根火柴棒,每增加1个三角形就增加2根火柴棒,所以搭10个三角形需要火柴棒3 + 9 × 2 = 21根,搭100个三角形需要火柴棒3 + 99 × 2 = 201根.

解法二 可以将搭1个三角形看作1 + 2根火柴棒,像这样搭2个三角形需要1 + 2 × 2 = 5火柴棒,搭3个三角形需要1 + 3 × 2 = 7火柴棒,搭10个三角形需要火柴棒1 + 10 × 2 = 21根,搭100个三角形需要火柴棒1 + 100 × 2 = 201根.

解法三 可以将搭每1个三角形看作用3根火柴棒,搭2个三角形需要2 × 3 - 1 = 5火柴棒,搭3个三角形需要3 × 3 - 2 = 7火柴棒,搭10个三角形需要火柴棒10 × 3 - 9 = 21根,搭100个三角形需要火柴棒100 × 3 - 99 = 201根.

解法四 根据图形:可得一组数列:3,5,7,9,…

用作差法(从第二个数开始,将每个数和它的前一个数作差),可得差值始终是2,所以可猜想第n个数为2n + ?,再取一个n的值代入,例如取n = 1代入可得2 × 1 + ?= 3,则? = 1,所以第n个数可表示为2n + 1. (再任取几个n的值代入验证. )

变式训练:

求下列各组数列中的第100个数.

(1)2,4,6,8,…

(2)1,4,7,10,…

(3)1, , , ,…

例2 剪绳子:

(1)将一根绳子对折1次后从中间剪一刀(如图),绳子变成 段;

将一根绳子对折2次后从中间剪一刀,绳子变成 段;将一根绳子对折3次后从中间剪一刀,绳子变成 段.

(2)将一根绳子对折n次后从中间剪一刀,绳子变成 段.

解 根据操作可知:

将一根绳子对折1次后从中间剪一刀,绳子变成3段;

将一根绳子对折2次后从中间剪一刀,绳子变成5段;

将一根绳子对折3次后从中间剪一刀,绳子变成9段;

将一根绳子对折4次后从中间剪一刀,绳子变成17段;

按此规律可得一组数列:3,5,9,17,…

解法一 作差法. 可得其差值分别为:2,4,8,…,其数值增长的速度超过之前数列的数值增长的速度,所以应该比n2的变化更快,而且其差值是以2的乘方在增长,因此,尝试用2n + ?来描述;再取一个n的值代入,例如取n = 2代入可得22 + ? = 5,则?= 1. 所以,第n个数可表示为2n + 1. (再任取几个n的值代入验证. )

解法二 对比序号. 把变数和序号放在一起进行对比,本题中将3,5,9,17对应①②③④可以发现数列中的数,都可以表示为2乘方数多1. 由此可得第n个数可表示为2n + 1.

变式训练:

求下列各组数列中的第n个数.

(1)2,4,8,16,32,64,…

(2)5,7,11,19,35,67,…

(3)1,- , ,- ,…

二、教学反思

(一)归纳思想的运用

解以上这道规律题都是先通过图形的直观性,得出几个特殊的例子的数据,再由特殊到一般探索这类问题的规律、提出猜想,这个过程运用了一个重要的数学思想――归纳. 归纳思想是数学探索发现的一种重要的思想,学生的创造力在很大程度上都是依赖于归纳的能力. 没有归纳就相当于没有创新的源泉. 推广到将来的工作、生活中,如果一个人将归纳应用于生活中,那么他也将更好的完善自我,更可能实现自己的奋斗目标. 所以,归纳思想不仅仅是重要的数学思想,更是使人终身受益的重要思想.

篇3

一、初中阶段的几类探索规律题型

图形中的规律: 图形中的问题可以用“数形结合”的思想解决,即既可以从数字方面考虑,也可以从图形中寻找规律.如果从数字的方面不好找,那么一定可以从图形中找到规律.

【例2】观察下列图形的构成规律,根据此规律,第 个图形中有 个圆.

圆,得到第 个图形圆的个数应该为

二、函数思想解决探索规律问题

刚刚列出的两种具有代表性的探索规律题型中,都是用的常规解法完成的,即需要学生通过观察,类比,归纳得出普遍规律。而事实上这对于绝大多数的学生来说,是一件比较困难的事情。因此,我在进行二次函数的知识整理过程中发现,函数思想用于解决这一类探索规律题有显著效果。下面我将重新通过新的方法,解决以上两个例题。

我们知道二次函数的解析式一般形式为: ,求解该解析式的方法是通过图像上的三个点代入解析式转化为关于a,b,c的三元一次方程组从而求得待定系数a,b,c我们试着反向思考一个问题,在平面直角坐标系中,任意三个点总能确定一个二次函数解析式,那么如果通过求解二次函数解析式,就能得到在该二次函数图像中满足该函数图像规律的所有的点的坐标。这意思想其实和我们的探索规律题不谋而合,下面我们来看第一个例题。

【例1】已知一列数2,5,10,17…,那么第10个数为 ,第n个数为

该数列给出了前四项的数字,如果用函数思想来思考。可将自变量x定义为从1开始的自然数的集合,其含义相当于每个数字对应的位置,因变量y为每一个对应位置上的数字。如果该数列具有规律那么从函数角度分析。所有的数字看作点的坐标,那么这些点一定在一条函数图像上。而对于初中阶段我们接触的函数类型中,二次函数是最大的领域范畴。所以有了这个思想,可以假定前三项看作点的坐标即为(1,2)(2,5)(3,10),将三点带入 得到:

解得: 解析式为: 即:第n个数为:

我们再来试试用该方法解决第二个问题

【例2】观察下列图形的构成规律,根据此规律,第 个图形中有 个圆.

三个坐标为(1,2)(2,5)(3,10)。我想已经能看出根本了。虽然这是明显不同的两个题型,而通过函数思想转化之后,化归为同一个问题的求解:二次函数解析式求解。除了这两个题型我们还能通过很多例题来诠释这个方法的可实施性,下面让我们再来看看近几年重庆市中考数学试题中出现的探索规律题型:

【例3】观察图中每一个大三角形中白色三角形的排列规律,第5个大三角形中白色三角形有 个

三个坐标为(1,1)(2,4)(3,13),将三点带入 得到:

解得: 解析式为 即:第n个数为:

第5个大三角形中白色三角形有49个

像这样的例题还能列举出很多,包括近几年重庆中考中出现的探索规律题型都能用该方法得到合理的解决。学生也能在这类题型中得到一种新的解法。

三、函数思想解决规律问题的基本条件

我们知道,在探索规律领域我们的题型还有很多很多,这里我就不逐一介绍。函数思想解决规律问题并不适合所有的题型。函数的定义决定了,在某个变化过程中,有两个变量x、y,每确定一个x的值就有唯一的y值与之对应。那么函数解析式以及规律才能通过求解和图像的方法诠释出来。而对于在规律题型中,具有三个或者三个以上的变量时,函数思想解决问题的方法就有一定的局限性。

所以该方法并不是万能的。因此在使用该方法的时候我们应该去保证使用的基本条件:两个变量。对于具备一次函数关系的规律题是否不能用函数思想呢?结果是仍然可用,当二次函数解析式中二次项系数求解为0的时候,也即是一次函数关系了。

无论是哪一种解法,它都体现了数学思想。规律探索试题一般是根据已知条件或所提供的若干个特例,通过观察、类比、归纳,提示和发现题目所蕴含的本质规律与特征的一类探索性问题。规律探究题作为一种重要的研究问题的方法和探索发现新知识的重要手段,非常有利于学生创造性思维能力的培养与训练,它不仅给中考试题的形式和内容注入了新的活力,而且给当前的课堂学习带来了重大影响,这种试题一般是在特定的背景、情境或某些条件下(可以是函数关系式、有规律的数或式、特定的生活情景、某种特征的图形、图案或图表),认真分析,仔细观察,提取相关的数据、信息,进行适当的分析、综合归纳,作出大胆猜想,得出结论,进而加以验证或解决问题的数学探索题。而用二次函数思想解决问题的基本思路是:转型三点坐标,求解二次函数解析式,得到固定规律,从而解决任意位置对应的对象。

篇4

通过实际调查,很多初中阶段的教师在中考复习教学时出现了就题论题的问题,其不仅不能提高学生中考复习的教学质量,还浪费了数学教学时间,使学生对数学学习的兴趣降低。

一、端正中考复习的教学态度

中考复习对学生提高数学学习成绩有重要意义,其作为初中数学教学的重要课型,数学教师必须端正教学态度。学生在学习数学知识时需要有一定的思维空间,并且要有一定的数学基础。但学生往往缺乏的就是数学基础知识,知识结构不够完善,导致学生在解题时普遍出现偏差与解题错误。学生通过中考复习可以巩固数学知识、纠正错误并提高数学思维能力,为中考做好充足的准备。

二、制订有效的复习计划

教师在中考复习阶段的教学中,要做好复习计划以及课前准备,它不同于新授课。中考复习教学目的是巩固学生数学知识与夯实学生的数学基础。教师如何根据学生的薄弱环节做好课前准备?这需要教师深入了解学生的学习情况,发现学生学习目标不到位的情况,从学生数学解题中发现其偏差与误区。因此,教师在课前时,要根据中考复习的教学内容创新认识情境,使学生感到新奇,促进其主动认识。

三、确定中考复习类型

(一)形成性

形成性中考复习是针对数学新知识、新概念,设计出新知识的教学内涵、教学条件与教学范围及解题技巧,它可以单独教学,也可以同新授课同时进行。

(二)小结性

小结性中考复习是针对学生已学完的内容单元,根据学生对内容单元知识的建构与认知程度,通过中考复习将学生本单元内容认知模糊的环节进行再认识,从而发展学生的解题思维能力。

(三)专题性

专题性中考复习建立在学生学完数学重要知识点的基础上,通过学生形成数学思想帮助其提高认知水平,减轻学习困难。中考复习的教学要针对课程内容与学生数学知识的掌握情况而设计,科学合理地确定中考复习类型。

四、科学安排中考复习的教学内容

(一)明确复习题与例题的教学目标

中考复习是以学生自主练习为主,其与新授课有本质区别。中考复习要达到预期的训练效果,教师首先要明确习题与例题的教学目标,针对数学知识点、数学教学目标与学生的现状。其次,要深入了解学生哪些知识的基础较薄弱,哪方面的内容要扩展、哪方面的解题方式要掌握等,针对学生问题明确教学目标。要有针对性地进行例题讲解,通过例题训练巩固学生的知识体系。同时,教学所举例题要具备示范性、针对性与典型性,与学生共同探讨解题规律,从而提高学生的教学效率。

(二)复习题及例题具有典型性

学习初中数学的主要目的是让学生懂得应用解题方式,解题与知识都有各自的规律,教师必须让学生懂得揭示规律。比如,二次函数是初中数学中较难的一个知识点,教师可让学生把二次函数的图象、对称轴与顶点坐标作为解题的突破口,通过多个相关习题让学生发现解二次函数题目的规律。

(三)设计有针对性与阶梯性的复习题

学生掌握数学的能力各有不同,教师要充分考虑到这一现象,让各个水平的学生参与到习题练习中。教师可通过低、中、高各层次题目的设计,使水平不均的学生进行分层次学习。另外,教师在选题时要从易到难,发挥学生解题的积极性。教师在设计习题时要具有创新性,不仅要体现数学知识与解题方式,还要充分调动学生的积极性。例如,教师在教授平方差公式时,可设计(1)(2)(3)组习题:

(1)①(x+y)(x-y) ②(1+4x)(1-4x)

③(m+8n)(m-8n) ④(a+4b)(a-4b)

(2)①(-x+y)(-x-y) ②(-m+8n)(-m-8n)

(3)(a-b+c)(a+b-c)

这三组练习题,它们的要求基本相同。(1)组是基础性习题,主要考查学生掌握基础知识的情况。(2)组是发展性习题,主要考查学生掌握知识的程度与应用知识的能力。(3)组是综合性习题,主要考查学生综合运用知识的能力。

综上所述,中考复习作为九年级学生的重要阶段,其能够帮助学生巩固数学知识,让学生重新回忆及加强知识的记忆,因此,初中数学教师要运用各种教学手段增强中考复习的有效性,帮助即将参加中考的学生做好充分的准备。

篇5

初中数学试题开放性的主要表现:(1)问题的条件具有不确定性;(2)解决问题的策略多种多样;(3)问题的结构具有多变性.由此可见,初中教学的开放性主要是根据中学生的个性差异所进行的有效教学.在解题的过程中,学生必须积极拓展自己的思维,综合以前所学过的知识定理进行推理,得出正确答案.除此之外,初中数学试题的开放性主要取决于问题提出时学生对问题的认知能力的高低.

初中数学开放性问题主要分为条件开放型、结论开放型、情景开放型、方法策略开放型等多种类型.

(1)条件开放型.这样的问题主要是具有根据所给的结论,进行反思和探索必须具备的条件,但满足结论的条件具有多样性.

例如,如图1,AB=DB,∠1=∠2,请你根据所给出的条件适当添加一些必要的条件,促使ABC≌DBE.

(2)结论开放型.这类题目主要是在已经给定的条件下,对对象是否真实存在进行探索,包括结论存在或者不存在两种状况.解题的方法一般为三步:假设存在——进行推理——得出结论.

例如,已知函数图像经过点A(3,3)、B(1,-1)两点,请你写出满足上述条件的函数解析式,并简要说明解答过程.

分析:该题由于函数解析式的类型未知,因此所确定的函数可能为直线、双曲线、抛物线等,是一道结论开放题.

对于开放性试题大致就是如此,另外两个类型就不一一举例了.

二、初中数学开放性试题与封闭式试题相比具有的特点

与传统的封闭式试题相比较,初中数学教学中的开放性试题具有以下几个明显的特点:

(1)初中数学开放题的内容具有条件十分复杂、结论具有不确定性、解题方法具有灵活性、没有现成的模式可以进行套用等特性.除此之外,数学开放性试题具有十分贴近学生实际生活的各种各样的题材,不同于只是依靠学生的记忆与套用固定的模式来解答问题的传统的封闭式试题.

(2)初中数学开放性试题形式具有试题多样性与内容生动性的特点.例如探求多种结论或者寻找更多的解题方法等,开放性试题完全体现出知识经济发展时代下的现代化数学气息,不同于封闭性试题只是形式单一,仅仅只有呆板的叙述方式.

(3)初中数学开放性试题解题过程中要求学生具有较强的思维发散性.开放性试题本身就有答案不唯一的特性.因此,在进行数学解题时必须要综合多种思维方法,从不同的角度对试题进行观察、分析、类比、归纳与概括等.

(4)初中数学开放性试题具有创新性的教育功能,既先进又高效,较强地适应了当前发展的需求,为进一步教学奠定了坚实的基础.

三、初中数学学习过程中开放性试题的备考策略

友情链接