你好,欢迎访问云杂志! 关于我们 企业资质 权益保障 投稿策略
咨询热线:400-838-9661
当前位置: 首页 精选范文 化学工程和化学工艺的区别

化学工程和化学工艺的区别范文

发布时间:2023-10-08 10:03:50

导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的13篇化学工程和化学工艺的区别范例,将为您的写作提供有力的支持和灵感!

化学工程和化学工艺的区别

篇1

中图分类号:TE08 文献标识码: A

前言:进入21世纪以来,环境问题越来越严重,而且,随着人口的继续增加,能源的持续减少,不可再生资源已经临近枯竭,生活垃圾核工业污染物也在无情的破坏着生态环境,人与自然的矛盾就这样不断被激化。在化学生产过程中,通过不再使用有毒、有害的物质,不再产生以及处理废物,生产无污染无伤害的目的正是绿色化学的设想。这虽然只是设想,但通过改进化学技术和方法,是可以达到减少有危害的化学产物的,绿色化学工程与工艺正是为了保证人类健康、生态环境,为促进化学工业节能目标而实施的。

一、绿色化学工业的概念

总结我们前面所阐述的,我们可以把其定义为无污染化学,所以在进行绿色化学工艺的过程中所产生的某种手段就是绿色化学工业技术,利用其原理从根源对普通化学反应产生的破坏进行整治。就绿色化学的特点来说,有以下两点,第一,绿色化学的本质就在于适中保持人与自然的和谐相处,近几年的快速发展而导致的环境破坏也就加速了绿色化学的快速发展;第二呢,绿色化学形成的结果是对环境友好的,绿色化学可以渐渐对付各种环境中产生的不利人类和自然发展

的因素。

但是究其根基,绿色化学是对环境的保护以及防范;而我们所说的环境化学就是对预防之后而无法达到效果的环境进行进一步的革新和处理,所以绿色化学和环境化学在起点和终点都是不一样的。那么在其反应过程中,对于有害物质进行摈弃,就可以制止不利产物的生成,但是在当前发展来看,这种想法只停留在表层,但是我们相信,通过科学家们的不断努力,这种想法终究会实现的。

二、传统化学与绿色化学的根本区别

化学可以理解为是研究从反应物向其生成物转化的的科学。传统化学在一定程度上是以资源过渡消耗和环境严重污染为代价的先污染后治理的化学工艺,其导致的危害是资源不可再生和环境污染,严重地威胁着人类生存和可持续发展,如目前全世界每年产生的废物达3-4 亿吨;而绿色化学(也称为环境友好化学)是从源头上防止环境污染的新兴科学。虽然传统的化学与绿色化学都为人类生活做出了巨大贡献,但绿色化学的根本思想是运用高选择性和原子经济性的反应,使用无毒无害的助剂、原料,生成环境友好的产品,而且经济合理,从而在节约资源的同时变废为宝。

绿色化学是对传统化学思维模式的革新和发展,也就是说,绿色化学可简单地描述为在化工生产反应过程中,改变了传统化学的“先污染后治理”,是“从源头上消除污染”,尽量不使用有毒有害物质,并减少或不生产废弃物和有毒有害物质。近年来的绿色化学发展,充分体现了绿色化学与可持续发展之间的密切关系,

因此,绿色化学也被称为“绿色与可持续化学”。

三、绿色化学应遵循的基本原则

1、污染预防优于末端治理污染;

2、尽可能的不用分离溶剂、试剂等辅助物质,若是不得已使用时,也应该是无毒、无害的;

3、在采用生产方法中尽量不使用和不产生对人类健康和对环境有毒有害的物质;

4、合成方法应具原子经济性(atom economy),原料分子中的原子更多或全部地进入最终的产品是原子经济性的核心目标。绿色化学的原子经济性有两个显著有点:一是最大程度地利用了原材料,二是最大程度地减少排放废弃物;

5、使用高选择性的催化剂优于化学计量试剂;

6、生产过程能耗应最低且在温和的压力和温度下进行;

7、设计具有高使用效益、低环境毒性的化学品;

8、在技术可行和经济合理的前提下,尽可能地使用可再生原料;

9、尽量减少或避免非必要的衍生反应步骤(如使用物理化学过程、屏蔽基团、保护复原的临时性变更等);

10、选择参与化学过程的物质,尽量避免发生意外事故的风险;

11、化学产品在使用完后应能降解成可以进入自然生态循环无害的物质;

12、发展适时分析技术以监控有害物质的形成。

四、绿色化学工程与工艺的开发

传统的化学工程与工艺对有害污染物的处理很被动,有滞后性,并且达不到根除污染物的效果,不但治理成本高,而且治标不治本。比如利用烟气除尘、脱硫,虽然净化了气体,却把污染物转化成了废渣废水,不但没有解决问题,反应复杂了处理方式。绿色化学工程与工艺,以零排放、清洁生产为原则,从化学反应着手,对污染进行有效的防止和控制。

1、采用绿色化学原料

化学生产原料是决定化学生产流程和工艺的主要因素,传统化学工程采用的绿色原料大多为不可再生能源,选取这种化学材料,不仅增大了我国不可再生能源的消耗量,同时也增加了化学生产污染物质的排放量,所以采用绿色化学原料是绿色化学工程重点研发项目,选用可再生、无污染的化学原料,如自然物质、绿色化学物质等。苞米杆、芦苇、纤维植物等农副产品废弃物,这些物质是典型的绿色化学原料,将其投入到化工生产中,可以转化成醇、酮、酸类的化学品,在转化过程中,这些化学原料只会产生氢气,不会产生任何有毒、有害物质。

2、采用高效高选择性的反应原料

对于化学工业来说,化学反应是决定化学工业生产过程中生产成本和生产难度、充分利用化学资源等各方面的重要性因素。可以降低工业生产的成本,而且能够提高产物纯度,减少无效反应产物的排放,节约化学资源,在化学工业中,有机物的反应复杂,研究机制不确定,所以选择合适的反应原料,不断提高工业技术是对化学工业的发展有着重要的意义。

3、提高化学反应的选择性

烃类选择性氧化是一类具有强放热性的反应,石油化工工业中时常发生这种反应,但是,它的生成物不稳定,很容易被进一步氧化,生成H2O和CO2。在各类的催化反应中,此反应一般不会被选择,因为有时生成物中还会存在同分异构提,不利于得到最终产物,所以,为了简化生产,一般都会使用选择性高的试剂。这样不仅可以降低分离产品和纯化产品的难度,还提高了反应的选择性,还能够起到降低成本,节约资源,减少环境污染的作用。所以加强这一方面的研究会有很强的实用性,比如开发载氧能力强、选择性好的新型催化剂,就可以应对不同的烃类氧化反应。

4、采用无毒无害的化学催化剂

近年来,化学反应越来越多的应用到了工业化的生产中,而催化剂对提高反应速率有着明显的效果,所以开发新型高效、无毒无害的催化剂以成为绿色化学工艺的发展方向之一。如今,相关部门都在研发新的烷基化固相催化剂,此外,分子筛催化剂也得到了很好的开发和应用。

五、寻找高效绿色的化学催化剂对提升工业生产水平的作用

1、 污染治理

目前,化学工业有其是石油、化工、煤炭等重工业对环境造成重大污染,危害生存环境,破坏原有生态平衡,威胁人类生存。引起国际上广泛关注,美国

1996年设立“绿色化学挑战奖”表彰在绿色化学领域中做出贡献的人。绿色化学的目标就是从化学生产的源头上实现环境治理,消除环境污染,绿色化学改变了传统化学工业先污染后治理的模式,实现预防、监测、零污染,预先环境治理,保护环境,资源可持续发展。

2、优化资源

化学工业绝大多数工艺都是上个世纪开发的,受技术发展的限制,化工领域是劳动密集型产业,高耗能、重污染、浪费原料、劳动力成本高,对大气、水和土壤等环境排放高。使产品成本中附带原料浪费、能源消耗、污染治理等成本。据统计,美国化工业1992年用于环保经费达1150亿美元,治理污染经费达7000亿美元,化学品销售中资源节约和环境治理成本提升。绿色化学从约资源方面,提高使用效率,减少环境破坏,降低新产品经济成本,有利于倡导节约型社会。

3、节能减排

节能减排就是节约能源、降低能源消耗、减少污染物排放。世界各国都制定了相关计划来实现这一目标,美国绿色化学目标:2020年将废弃物减少40-50%,化学生产行业消耗原材料降低20-25%。日本制定新阳光计划,在环境化学领域倡导绿色技术,减少环境污染,发展减排新技术应用。中国2006年提出降低能源消耗和对外石油依赖,希望2010年,单位GDP能耗比2005年降低两成、主要污染物排放减少一成。2013年国家发改委表示,为确保今后节能减排目标、推进绿色低碳发展,深入推进节能减排各项工作。绿色化学正是实现节能减排和环境保护重要工具。国家倡导在重点领域节能减排,推进企业节能低碳行动,开展绿色化工行动,加强环境治理,加大治理力度,引导循环经济,着力增强全民节能减排意识,实现共创和谐社会,建设美好家园。

4、化学工业中绿色化学的应用

绿色化学的核心就是要利用化学原理从源头消除污染,做到完全无公害无污染,因此它又被称为清洁化学,应用范围广泛,它涉及有机合成、催化、生物化学、分析化学等学科。工业中化学反应发生的条件一般都是高温高压,在反应过程中,只有适宜的温度和压力才能使用现代化学工业的技术,另外加上绿色化学的高效催化剂,这项工程才得以不断发展。例如上文提到的低维材料碳纳米管,催化裂解反应中有很大的化学功效。

5、化学工业中绿色化学和现代生物结合的应用。

讲到了催化剂,这就涉及到另外的技术性学科生物技术。生物技术的就是高科技与高端专业知识结合的产物,学科内又分为细胞工程、基因工程、胚胎工程等等。在化学产业中主要应用于生物化学。在化学工业生产过程中,选取有机的生物材料,主要是动植物的原料,另外也会采用他们经过上千年演变的产物―地下的煤炭等。催化剂主要由人工催化剂和自然催化剂,分别由人工合成以及采用天然动植物的生物酶。这样能够满足现代化学工业发展的需要,同时也能切合可持续发展的指导思想,节约能源,维持现在生态平衡的状态,推动化学工业发展。

六、结束语

综上所述,可持续发展在当今社会显得越来越重要,因此化学工业生产中也要遵循这个指导性思想,采用选择性高的原材料,节能减排,利用高新化学催化剂,最大程度的减少污染物排放,不断增高有效产物纯度,在资源有限的前提下,保护生态环境,维护现有的生态平衡。绿色化学在整个化学工业的发展中,有着实质性的意义,高新技术性产物催化剂的使用能改变现有产业结构和传统的生产过程,加速化学工业发展。

参考文献:

[1]于贺. 论绿色化学工程与工艺对化学工业节能的促进作用[J]. 科技与企业,2013,05.

篇2

px,中文名称对二甲苯(para-xylene),属于低毒类化学物质。带有危险标记,对人体的健康有一定的危害。历史上,px曾经引起了工业界对其毒性程度的激烈讨论,工业机构及其支持的科研机构认为是低毒,环保机构及部分科学家(如厦门大学赵玉芬院士)认为是剧毒。px主要用于制造对苯二甲酸,可用于化工及制药工业等。另外,它还是许多化学合成原料的重要中间体。生活中常见的胶片片基、磁带本文由收集整理片基、电容器膜、光盘、磁卡等电子信息产品中都含有px,px已经成为应用广泛的重要化工原料之一。

根据资料显示,中国已经成为世界上最大的px生产国和消费国。px项目一直饱受争议:一方面,px涉及的产业收益巨大,各地相继建立了一些比较大的px项目,用于促进当地经济的快速发展;另一方面,px本身的毒性和以及在生产过程中产生的污染,使得多地民众对px项目的建立和实施产生了抵制情绪。px项目启示我们:科学技术是把双刃剑,人们在利用科学技术改变社会,造福人类的时候也不能忽略它带来的弊端。随着科学技术负影响的显现,工程的伦理性逐步走入了人们的视野。自20世纪70年代起,工程伦理学在美国等一些发达国家开始兴起。经历了20世纪的最后的20年,工程伦理学的教学和研究逐渐走入建制化阶段。在我国,类似的工程伦理道德规范以及法制化建设方兴未艾,我国工程伦理学的春天正在逐步逼近。

二、化学工程伦理规范的构建

作为工程的一支,化学工程有区别于一般工程的特点:

(1)化学工程潜在风险大

(2)化学工程对人的影响更直接

(3)化学工程的监控难度大

基于化学工程的以上特点,化学工程伦理规范的构建就尤为重要。

化学工程理论是工程理论的一部分,将科学技术转化为生产力的化学工程,不仅是一种技术的应用行为,同时也应该被视作一种社会实践活动。因此,化学工程伦理规范的构建应该技术和社会实践两方面来考虑。

第一,技术方面:

(一)降低化学原料的威胁

首先,化学工程中使用到的原材料,大多数都带有危险标记,对人们对健康具有一定的威胁。甚至,有些化学原料无色无味,可以使人在不察觉的情况下吸入或接触到,从而造成对人体的伤害。危险化学原料应该具有醒目的危险标志是十分必要的。

其次,危险化学品在生产、储存、使用、经营和运输过程中都应得到妥善处理。有些危险化学品,可以通过冷藏压缩,密封保存等技术手段来降低和消除对人体和环境的危害。运用专业的技术降低化学原料的威胁刻不容缓。

(二)保证生产过程的规范和安全

在化学材料的生产过程中涉及很多环节,每个环节都可能具有潜在的危害。保证整个生产线都达到科学工艺的要求能够减少工程事故和对环境的危害。

首先,通过对相关技术人员的培训,使其了解生产过程环节的危害,使其在每个生产过程中的操作都符合相应的规范,对于一些故障能够妥善处理。

其次,运用技术手段对每个生产环节可能出现的危险进行预防和控制,要有完备科学的三废处理设备,保证生产过程的规范和安全。

(三)治理和修复化学工程对环境的危害

对化学工程对环境的污染应该做的预防为主,防治结合,综合治理。但是,有些化学工程对环境的危害,运用目前的技术手段不可避免的。或者,由于种种原因,对环境的污染已经造成,都可以运用相关技术,采取有效措施,对污染后的环境进行治理和修复。

首先,必须对环境污染工程进行详细分析,找出污染源,确定污染物,最终制定相应措施对环境进行治理和修复。

其次,修复过程中采取的方式方法,应该充分考虑到周边公共建筑和相关人群的敏感度等因素,建设修复设施不得对场地及周围环境造成新的破坏。

第二,社会实践方面:

(一)借鉴国外成功经验的同时,结合中国的具体情况

对于化学工程伦理规范的构建和制定,国外的研究比国内要早,因此很多的成功经验值得我们学习和借鉴。

但是,国外的研究现状不完全适用于中国国情。在国外,工程伦理的研究主要针对工程师的伦理分析,因为国外的工程运行体质是以工程师作为工程责任的独立主体。而在国内,工程师侧重的是技术层面,工程从论证到实施及运行,分别由不同的主体承担责任,工程师很难做到独立承担。

因此,处理化学工程伦理规范的构建问题,应该借鉴

国外成功经验的同时,结合中国的具体情况。

(二)构建过程中要明确不同角色的不同权利义务

一个化学工程的项目,一般涉及多个角色,不同角色在项目中有着不同的分工和责任。

化学工程师应保证化学工程科学合理的论证和设计,全力参与、全程跟踪化学工程活动,同时对化学工程的每个生产环节进行监督,从而降低化学工程风险,保障化学工程合伦理性。

工程决策者应该根据针对工程中可能存在的问题和风险进行分析,制定不同的备选方案,选择合适方案,实现工程最优化。

政府部门应该在道德约束和伦理规范尚不完善的情况下,对化学工程中的每个参与者进行监督,明确他们的权利义务,监督和管理化学工程的实施。

公众是化学工程的最直接利益相关主体,有权监督化学工程的运行和实施,捍卫自身健康和生存环境安全,并对化学工程的负影响,提出正当的伦理诉求。

(三)化学工程的伦理规范要高于一般工程

化学工程具有一般工程的特点,同时高危险性高污染性使得化学工程与一般工程的不尽相同,化学工程对环境和人类健康的影响更为迅速和直接,与公众的生存环境和自身健康息息相关。因此,化学工程的伦理规范要高于一般工程。

首先,化学工程伦理的制定和实施要比一般工程更加严格,确保化学工程的规范和安全。

其次,对化学工程伦理的监督和执行也要高于一般工程,敢于接受社会各方面的监督,取得公众对于化学工程的信任。

三、结束语

厦门、大连、宁波和咸阳等地的px项目启示我们,只有不断地完善化学工程伦理规范的构建才能确保化学工程的持久化发展,真正地做到以人为本,促进人与社会的和谐发展。

化学工程伦理规范的制定应该从技术和管理两个方面来考虑:

化学工程是工程的一个重要分支,化学工程伦理规范应该在原有工程伦理规范的理论框架下,同时结合化学工程理论来构建。通过技术了解危害,规范操作,对可能的危险进行预防和控制;

同时,任何一个工程也是一种社会实践活动,那么就不应该脱离社会而独立存在,当然也应该受到社会伦理规范的约束。

通过管理,结合国内的具体情况,明确不同角色的权利和义务,同时制定相应的化学工程伦理规范。

篇3

高分子材料是化工产品的一个分支,是目前发展最快、应用前景最广且最具生命力的一类化工产品;高分子行业的迅猛发展,急需大量复合型人才。而大多数高校高分子材料专业的人才培养侧重在材料的合成等偏理论方面,对高分子材料加工成型为终极产品的工艺环节关注的程度不高。广西大学化学工程与工艺专业在化工材料加工工艺方面开设了系统的专业课程群,为“高分子材料成型与工艺”课程的设置打下了坚实的理论基础。然而,广西大学化学工程与工艺专业没有开设过高分子物理、高分子化学、高分子材料、聚合物加工原理、高分子材料基础等高分子基础或专业基础课程,且该专业作为一个覆盖范围广泛的交叉的专业,开设的专业课程很多,所有的专业课程学时都高度压缩。在高分子材料理论知识缺乏、课程学时数少、无配套实验的背景下,本文从教学内容、教学方法、创新能力培养等方面对“高分子材料成型与工艺”课程教学改革进行探索。

一、教材的选用

广西大学化学化工学院“高分子材料成型与工艺”课程刚开设时,选用的教材是史玉升等编著的《高分子材料成型工艺》,学生通过学习可以掌握高分子材料的制备、性能、成型、评价及应用,全面系统地了解高分子材料成型技术的最新知识。教学过程中,学生反映这本教材的难度太大,因为“高分子材料成型与工艺”是一门专业技术课程,需在完成化工热力学、化工原理、物理化学、有机化学、无机化学、分析化学、高分子物理和化学、高分子材料、聚合物加工原理、高分子材料基础等基础理论课和专业基础课程后,对学生进行综合训练。

“高分子材料成型与工艺”课程是在大三第一学期开设的专业课,此时学生已经修完化工热力学、化工原理、物理化学、有机化学、无机化学、分析化学等基础理论课,然而基本没有学过高分子物理、高分子化学、高分子材料、聚合物加工原理、高分子材料基础等专业基础课,高分子材料方面的基础较差,加上这本教材讲述的理论知识较少,所以学起来较吃力。根据学生的反映,学院及时更换了教材,采用周达飞等主编的《高分子材料成型加工》“九五”重点教材,该教材高度概括了高分子材料的最基础的知识,对加工成型影响很大的高分子流变学基础知识进行较全面深入的介绍,全面介绍了高分子材料成型加工最常用的基本工艺,也兼顾了新技术和新方法,难度适中,得到学生好评。

二、教学内容的改革

高分子材料成型技术涉及化学、材料、材料加工、机械等多种学科,“高分子材料成型与工艺”课程是一门专业技术课程,需要广泛的理论知识基础。化学工程与工艺专业的学生基本无高分子材料理论基础知识,学习起来的确难度很大。非高分子材料专业的“高分子材料成型与工艺”课程要以“高分子材料―成型加工―制品性能”这条主线展开教学内容,重点掌握三者的关系,强调成型加工对制品性能的重要性,这是本课程的主题思想,也是高分子材料的工程特征;选用“九五”重?c教材《高分子材料成型加工》,充分利用国内外重要专业期刊了解行业最新动态,不断更新及补充教学内容,确保教学内容的先进性;在教学内容安排上,以高分子材料成型加工的大工程观点为着眼点,以宽专业为目标,概况高分子材料理论基础和概念(详细的内容指定参考范围让学生利用课外时间自学),从高分子材料的加工原理出发,着重对成型加工工艺进行讨论。从高分子材料的成型加工的共性出发,对模压、挤出、注塑及压延四大成型技术及工艺进行重点讲授,然后讲授塑料、橡胶及复合材料的成型特点和区别,对于一些新的成型方法,以及教材中未涉及而在一些科技文献中见报道的新的成型方法及工艺,教师建立了QQ群这样的交流平台,并将高分子领域权威的一些微信公众号分享到平台上,经常转发高分子材料国际国内的重要进展到平台,引导学生关注,激发学生的学习积极性,让学生以兴趣为导向自动组成兴趣学习小组的方式进行自学。笔者首先通过课内课外结合强化高分子理论基础与概念,对成型加工影响最大的流变性在课堂上进行详细介绍,而其他性能如稳定性、电性能、光性能等材料性能则作为课外学习内容,在有限的学时内,节选核心内容,把高分子材料合成、性能、加工及相互间的影响规律简要完整地介绍。比如教材中同一种成型方法按不同的应用体系分成很多小结,而教学过程中每种成型工艺仅以一种材料为代表来讲,但不同章节会选不同的材料体系来进行,比如讲橡胶的压延,那么注塑可能选塑料,而挤出可能选复合材料,这样来兼顾各类高分子材料的成型。

三、教学方法的改革

教学方法是影响教学目标是否能够实现、实现的程度和效率的关键。非高分子材料专业的“高分子材料成型与工艺”课程教学存在两个难点:一是许多内容涉及高分子加工机械、设备结构及操作过程,这要求有实际感性认识和直观性;二是该课程的理论性和实践性都很强,如何在教学过程中实现理论与实际的结合,用理论来解释生产中的实际问题,或以具体实例来说明理论,促使学生真正掌握知识。针对这些问题,“高分子材料成型与工艺”课程在教学过程中对教学方法、教学手段进行了改革。

(一)现代化教学与传统教学相结合。“高分子材料成型与工艺”课程中许多内容涉及高分子加工机械、设备结构及操作过程,这要求有实际感性认识和直观性,同时,该课程的理论性和实践性都很强。笔者根据所选用教材,利用PowerPoint加入声音、图像、动画、视频等各种多媒体信息,并根据需要设计各种演示效果,将抽象、生涩难懂的知识形象生动地展示给学生,激起学生学习的兴趣、吸引他们的注意力,大大加深学生对知识的理解和印象。由于化学化工学院缺乏相应的高分子材料成型教学设备,教学小组联系外界资源制作了几个基本成型工艺的微课,同时广泛收集案例、动画演示及成型录像,不断补充到授课内容中,让学生对高分子成型工艺及设备等有更直观的认识,对课件内容进行更新和完善,丰富课堂内容,加大课堂信息量,使学生获得对高分子材料成型加工的理性和感性双重认识,使教学达到事半功倍的效果。

同时,教师也要注意吸取传统教学中讲解的优点,将教师的语言、激情和应变能力体现在多媒体教学中,并用眼神、情感、心灵与学生沟通,必要时还要进行板书,让学生彻底把握一些关键问题。

(二)采用“任务驱动”教学法和启发式互动式教学。与传统的以教师为主体的“填鸭式”“灌输式”教学方式不同,笔者在部分知识点的授课中尝试采用“任务驱动”教学法,从传统教学的讲授、灌输和教师主宰课堂,转变为组织和引导;从单纯讲解转变为与学生进行适当的交流和探讨。笔者在讲述“高分子材料配方设计”这一章内容时,并没有按照书本来进行,而是布置了一道思考题“设计食品袋的配方”,让学生通过自学课本内容与上网查找相关知识等来完成这一思考题,并在学生完成后让他们用PPT来展示成果,通过讨论的形式与学生探讨了配方设计中的一些原则与内容。

篇4

为适应国家战略发展需要,2013年教育部、中国工程院联合出台了《卓越工程师教育培养计划通用标准》,为高等院校培育工程技术人才提出了新的标杆,也提供了新的契机。在众多工科专业中,化工专业涵盖过程工业的各个部门,对高质量各类型的工程技术人才需求十分迫切。化工工艺设计课便是培养化工专业优秀工程技术人才的一门不可多得的课程,在高等工程教育的深化改革中越发展现出其在本科教学课程体系中无可替代的作用和地位。

1化工工艺设计课简介

化工工艺设计课(以下简称“工艺设计课”)目前在国内大多数设立化学工程与工艺专业的院校都有开设,一般安排在本科四年级,是在学生学完专业基础课之后,综合运用专业基础课、制图以及经济、安全等方面的专业知识解决问题的一次训练,更能够迫使学生从做题的情境切换到工程实际的情境,因而能加快学生的思维向工程思维转变,能切实提高学生处理工程实际问题的能力。因此,与本专业的理论课相比,工艺设计课在优秀工程技术人才的培养方面具有独特的优势。然而,由于多种原因,工艺设计课还存在着不少问题,这门课的优势还远未被充分发掘,应有的教学效果还远未达到。

2工艺设计课存在的问题及原因剖析

纵观国内开展工艺设计课的高等院校,目前该课程教学过程中发现的主要问题可归纳为以下五点。

2.1设计要求和难度一降再降

工艺设计课教学效果难以达到预期,很大程度上源于设计要求和难度的一降再降。一方面,信息时代生活节奏越来越快,压力越来越大,很多本科生为了提高自己的竞争力,不得不分心考研、考证、实习、联系出国、进实验室、参加学生工作和社会实践,难以专注于专业课程学习本身。因此,学生们能真正投入到工艺设计课中的时间越来越少。例如,每年都有大量学生参加考研,考研之后紧接着就是毕业设计,使得学生很难充分重视工艺设计这门课。另一方面,化工设计工作量巨大,真正的设计从来都是团队共同作业才能完成。但在实际教学中,为防止学生抄袭而催生的“一人一题”的强制要求,也使得教师很难提出由多人共同完成一个设计任务的设想,因而也不得不降低对个人的要求和难度。

2.2设计题目缺乏精心设计

设计题目的合适与否对教学效果影响甚大,但从目前情况看,不少设计题目缺乏精心设计,衍生出如下几类问题。(1)与《化工原理》、《反应工程》等经典先修课程脱节严重。近年来,有一部分带设计课的指导教师认为,设计应该做真题,不应该做所谓的“假题”,甚至于设计题目就是指导教师团队正在做的工程项目。这就使得设计题目中所涉及的核心反应和分离单元经常不是经典的反应器和单元操作(如吸收、精馏),有时会大量涉及气体吸附、膜分离、结晶、离子交换等非传统的化工的单元操作,有时甚至还因为新技术保护的原因无法获得设计所必需的数据。此外,即便有些题目来源于经典的传统化工工艺,但如完全忠实于实际项目,没有必要的简化处理,也必会造成工艺系统过于庞大、题目过于复杂,使学生感到一下子难以承受,不利于短学时性质的工艺设计教学。(2)“一人一题”设计的考虑不够周全。“一人一题”的初衷是限制学生抄袭。然而,很多设计题目,设计变量很少,甚至只有生产强度一个变量,使得学生的设计题目之间没有本质区别,无法杜绝学生抄袭。只要有个别学生做出来,其他学生只需简单地线性变换,仍可效仿,无需经过足够的个人思考。(3)未充分体现“整体设计”,仅是单元操作的简单组合。工艺设计课的工艺计算过程,应充分体现过程、工艺的整体设计。然而,目前的许多设计题目,其设计条件没有涉及单元之间的耦合,使得学生无需深刻认识过程和全流程,便可迅速进入到各个单元操作的计算阶段,其教学效果约等于化工原理课程设计,缺失了对学生大局观的培养。

2.3缺乏高效的“过程管理”

目前很多院校完全采用“结果管理”的教学模式,存在很大问题。所谓完全采用“结果管理”,即设计开始阶段做一次较为充分的宣讲,对设计过程不甚关心,完全以最终的报告和图纸定成绩。有些教师迫于科研压力,不愿在设计课上投入时间精力实施过程管理,甚至以“设计课以学生为主、学生自己完成”为理由,过度精简了设计过程中的师生互动环节。当然,也有很多教师非常重视过程管理,投入了大量的精力,但效率不高,其重要原因就是容许学生自由发挥的地方过多,学生的设计计算结果五花八门,教师很难对学生的阶段性进展做出高效反馈,甚至会打击青年教师的信心。诚然,设计没有标准答案,充分开放的设计题目更有利于启发学生,但这更多是针对设计大赛或是毕业设计。对于学时有限的工艺设计课教学,笔者不敢苟同。

2.4指导教师与真实设计资料的接触非常有限

近年来入职的青年教师,受到目前高等院校大环境影响,学术型的居多,大多没有经历过多少设计实践,自身工程设计底子薄。即使是有一定经验的教师,也有很多没接触过真正的、有代表性的设计资料。笔者所在的教研室只是收藏了一些早期的纸质版的图纸供学生学习,能反映当今化工厂、化工车间设计成果的图纸(特别是CAD电子版的图纸)还非常有限。学生们从未见过规范的设计文件和图纸,他们上交的报告和图纸都与行业规范相差甚远。

2.5先修课程缺乏对工艺设计课的铺垫

工艺设计课是一门综合运用所学专业知识的实践性课程,应该让学生能够在学习过程中将所学知识充分用到解决实际问题中去,这样会激发学生内心中的成就感,更加明白终身学习的重要性。然而,从目前看,学生学过的先修专业课程,对工艺设计课的铺垫不够,常常与设计题目脱节严重,这会使得“大学上的课没用”的思潮抬头,学生听课的积极性大减。例如,《化工工艺学》和《化工设计》这两门课是工艺设计课的直接先修课,但这些课程间的沟通合作还远远不够,从而不能将工艺设计题目中涉及的工艺流程在这些先修课上有所伏笔,提高了学生们面对工艺设计题目时要迈过的门槛。又如,认识实习、生产实习等实习环节,也是理论与实际联系的重要桥梁,但也很少跟工艺设计课之间建立紧密的关联[5]。我们常常不能将工艺设计题目中涉及的过程、车间和设备在实习阶段就让学生有所了解,这就使得工艺设计只能停留在课堂教学而没有实习支撑。

3改进工艺设计课的若干措施

笔者结合自己的教学实践以及在学生阶段的一些设计经历,尝试总结了一些可能对解决上述问题有所改善的措施,分五点陈述如下。

3.1精心安排设计时间

(1)尽早动员,尽早布置题目。《化工工艺设计》的全员动员应在四年级上学期开学即进行,最好能和另一门设计类实践课《化工原理课程设计》的全员动员合并进行。这样做好处有二:①学生通过一次集合就知晓大四的设计开课整体情况,便于其合理安排时间;②这样安排可以使得在《化工原理课程设计》结束后顺理成章地布置《化工工艺设计》的题目,给学生更多的准备时间应对难度更大的《化工工艺设计》。

(2)尽量避开考研冲刺期。可考虑将官方的开课时间定在春季学期,实际教学则可以跨年度。具体地说,是从考研结束之后那一周算起,完整进行4~5个自然周。笔者所在教研室一直推行这个方针,最大限度地减少了考研对工艺设计课的影响。

(3)给学生较为充足的报告撰写时间。在教学环节结束后,推迟1~2周(甚至整个寒假)收缴报告和图纸,给学生充足的报告撰写时间。如果寒假之前时间不够,则顺延到年后,但无论是否顺延,都统一在春季学期的第一周做完并上交报告,以减少对《毕业设计》环节的干扰。

3.2精心制定设计题目

(1)设计题目应更强调过程和整体。应通过设计条件的合理设定,使得任何一个单元操作都不可能独立求解,籍此强化过程物料衡算和过程设计的概念,使学生认识到过程设计不是单元操作设计的简单加和,有利于培养学生的大局观和主人翁意识。

(2)拉开“一人一题”设计条件的差异。通过设置不同的设计条件参数,对设计题目分组,使组与组之间在一开始便存在较大差别。这样即便无法完全杜绝抄袭,但也增加了抄袭的难度,迫使试图“偷懒”的学生不得不思考别人的结果哪些可以借鉴,哪些不能简单照搬,在这样的“询问他人+自我思考”中也潜移默化地达到了教学的目的,“少数人栽树、多数人乘凉”的状态得到有效的遏制。

(3)设计的前期计算应有相对确定的参考答案。设计的物料衡算、热量衡算和设备工艺尺寸计算部分,应有相对确定的参考答案,作为指导教师进行过程控制的重要依据。原因有四:①由答案反推过程,有利于及时纠正低级错误,有利于引导学生主动思考;②结合结果控制的管理,当有严格时间限制时,往往比纯过程控制效果更好;③能提高当面交流的效率,有利于提高学生的学习体验,也有助于提升青年教师信心,使其快速成长;④设计的开放性体现在多个方面,诸如PID设计就能充分训练学生的发散思维,没必要从工艺计算就开始发散。

(4)避免重复训练。设计题目最好应包括反应器设计。如果没有反应器,指导教师还应充分注意所带班级《化工原理课程设计》的题目,使得核心单元操作与《化工原理课程设计》有所区别。

3.3完善成绩评定方式

最终成绩应是设计步骤(设计过程)、答辩(测验)、说明书撰写、图纸绘制等环节的成绩总和。其中,设计步骤(设计过程)环节是过程监控性质的,应规定学生在每个节点必须完成的任务,且对其完成情况作出快速、准确的评估;答辩(测验)环节也是过程监控性质的,是教师了解学生投入情况的另一个重要窗口,是对抄袭行为的必要威慑。

3.4加强设计类课程的中青年教师培养

(1)提高准入门槛。首先,从事化工设计实践环节教学的教师,必须有化学工程与工艺的专业背景,最好是参加过设计大赛或本科毕业设计题目为设计型题目。其次,青年教师接手设计课也必须有听课、助课等自我修炼的过程,特别是没有时间较长、强度较大的实践经历的青年教师。

(2)鼓励设计课相关的教师“走出去”访问学习。鼓励工艺设计课相关的教师,包括从事《化工设计》理论课教学的老师,多去化工专业排名前列的院校走访,听听那些口碑较好的老师的《化工设计》理论课,了解其授课内容,学习其先进的课堂组织方式和授课方式。笔者本科阶段上过天津大学王静康院士负责的《化工设计》课,深刻体会到:把《化工设计》理论课上好,是调动学生兴趣的第一步;否则,学生就会本能地对设计实践课产生抵触情绪,很难谈得上有兴趣。

(3)下大力气收集、整理真实的设计案例。学院和教研室应设法为一部分指导教师创造去设计院实训的机会,积累一些真实的设计案例,至少是获得一些标准规范的PID、平立面布置、设备、配管设计等图纸,加以分类,做好资源共享管理。

3.5加强不同专业课教师之间的沟通、协作

在此笔者有两个特别建议:

①特别建议带设计的指导教师参加实习。比如,在生产实习过程中,要求学生认真体会工艺设计相关的工艺和单元操作,了解厂区总图布置、设备布置、管线走向、监控室设计等,学习工程实际中的反应器和多组分分离系统。

②特别建议《化工工艺设计》的指导教师也从事《化工原理课程设计》的教学,甚至是带同一个班。同一位老师带班,更有利于讲清楚这两门设计课的相通点和不同之处,使得工艺设计课能够尽量多涉及过程和整体,避免在单元操作的局部中纠缠不清。笔者已通过这种模式连续带班了2届学生,效果良好。

4结语

工艺设计课是化工专业设计类实践环节的典型代表,综合性和应用性都很强。在高等工程教育深化改革方面,工艺设计课是大有可为的,应引起相关专业、相关院校和相关部门的高度重视。一方面,必须从学校、学院和教研室层面重视起来,为支持设计课的发展、构筑合理的专业培养体系精心谋划、大胆创新;另一方面,这门课以及化工设计相关的指导教师应当意识到自己身上的责任和使命,下大力气提高组织教学的水平和业务水平。如此经过全方位多角度的改进,工艺设计课的教学质量才会不断提高,才会在培养高层次工程技术人才方面发挥更大的作用。

参考文献

[1]冉茂飞,张嫦,刘东,等.基于卓越工程师计划的“化工设计”课程教改初探讨[J].广东化工,2015,42(14):228-229.

[2]赵云鹏,周敏.化工设计课程教学改革与实践[J].广州化工,2014,42(8):193-194.

[3]梁克中,黄美英,赖庆柯,等.大学生化工设计竞赛对化工设计课程教学改革的促进作用[J].职业时空,2014,10(8):76-77.

[4]张刚,涂军令,傅小波,等.化工设计课程教学中的问题与改革尝试[J].广州化工,2016,44(6):181-182.

篇5

石油化工行业对于国家经济的发展具有重要意义,是国家能源的重点行业之一,但是与其发展同时出现的是对环境造成了重大的压力,其排除的残渣废水严重影响环境的发展,必须采取有效地对策加以治理,选择合适的方案提升管理水平。

一、石油化工废水的重要特征

石油化工产业在进行生产的过程中,产生与排除的废水量十分巨大,从其所含有的成分来看,存在着原油脱盐水、洗涤水、冷凝水、油罐的脱水、机泵的冷却水与锅炉的排污水等等,其产生的废水量与污染物质是随着炼厂的类型及加工工艺等方式而存在一定的差别。一般的炼油厂残渣废水主要来自常减压、催化生产的初常顶油和催化汽油、催化柴油等油品用碱液进行碱洗后的废液,而所洗的产品不同,残渣的性质也存在着一定的差异,对残渣的物质分析,我们发现,其仍然存在着一些有用的物质,我们必须采取有效的回收对策,实现资源的利用最大化,剩下的物质无法被利用,作为残渣排放,对这部分物质的含油量分析,我们发现,一般情况下,其COD值都特别高,可高达数十万,COD及硫化物、酚等污染物的排放量占炼油厂或石油化工污染物排放量的20~30%,除此之外,还含有一定部分的酚和环烷酸,对这部分物质必须采取有效对策进行处理,否则将会对整个系统造成一定的污染,将会对整个企业造成严重的冲击,影响无处处理系统的功能发挥,所以,加强对残渣废水的处理是十分必要的。

二、处理残渣废水的有效对策分析

从我国当前的科学技术水平来看,对残渣废水的处理工艺水平相对较高,以硫酸酸化法、焚烧法、稀释处理发、湿式氧化法、利用催化裂化再生烟气中和高级氧化组合工艺处理碱渣法为主,下面就对这几种工艺进行详细的分析

1.传统的硫酸酸化法

这是较为传统的对残渣废水处理的工艺,首先其程序是进行沉降除油、然后用硫酸酸化,最后进行分离。其原理对废水的酸碱值进行调节,除去大部分的油,但是其除去污染物的能力十分有限,经过这一处理工艺的污染物对环境的污染仍然十分严重,导致后续处理存在着一定的难度,而且存在着一定的安全隐患。

2.成本费用较高的樊烧法

这一方法的原理是利用瓦斯砌体或者是燃料油将经过蒸发处理后的残渣废水在樊烧炉中经过高温樊烧,利用高温氧化除去所含的污染物。但是对樊烧的物质进行化验分析后,我们发现,其会产生大量的SO2等有毒气体,会对周边的环境造成一定的影响,而且由于需要采用燃料油或者是瓦斯气助燃,所以其成本相对较高。

3.对污染物进行稀释

这一方法的原理相对较为简单,就是降低污染物的浓度,用水进行稀释,使其达标。但是从实际情况来看,残渣废水中污染物的浓度相对较高,与预期的标准相差十分巨大,要想达到目标,就需要扩大污水处理厂的规模数倍,成本相当高,而且会造成土地资源的浪费。

4.湿式氧化和间歇式活性污泥处理法

这一方法最早出现在辽宁抚顺,相对而言,其处理效果十分理想,但是其对操作的环境要求十分要个,必须在高温高压的环境中方能进行。其由缓和湿式空气氧化脱臭(WAO)和间歇式活性污泥生物处理(SBR)两个单元构成。在WAO单元,残渣废水中的无机物及有机物经过氧化作用合成硫代硫酸盐、亚硫酸盐和磷酸盐,实现脱臭的目标,同时可以减少在后续的酸化中可能出现的用酸量。进入到SBR单元,经过氧化脱臭后的废碱液在SBR反应池完成生物降解和固相微生物与废水的固液分离过程,出水COD500mg/L,达到二级生物处理系统进水水质的控制指标,满足污水处理的要求。

5.利用化学原理处理残渣废水

现在应用较为普遍的还有利用催化裂化再生烟气中与高级氧化组合工艺对残渣废水进行处理,其原理是将汽油精制产生的碱液或碱渣和液化气精制产生的碱液或碱渣进行调和,在调和后的废碱液或碱渣中通入催化裂化再生烟气进行中和反应,达到降低PH值的目的,流化催化裂化装置再生烟气中主要包括酸性气体CO2、SO2及NOx,且该酸性气体将废碱液或碱渣中的NaOH、酚钠、环烷酸钠、硫化钠进行中和反应转化为碳酸钠及酚、环烷酸、硫化氢;便于实现残渣废水中的油和酚、环烷酸的处理。具体的处理步骤包括进行多级沉降、高级氧化、絮凝、压滤工艺等等;进一步提取粗酚、环烷酸等;将处理后的水有管理地排放到现有的污水处理厂进行综合处理。

三、各项工艺的优劣对比

经过对以上的各项工艺分析对比我们发现,各种工艺都存在着一定的处理能力,但是相较而言,硫酸酸化法相对较差,在应用中存在着一定的安全隐患;樊烧法尽管效果十分理想,但是其成本过高,而且会造成周边环境的压力;稀释处理对策相对实现的可能性不大,而且对后续污水的处理仍然存在着很大的压力。而湿式氧化和间歇式活性污泥生物处理法经过实践分析,我们发现其成本性对较低,但是对施工环境的要求较高,但是处理的效果十分理想,脱硫率可以高达99.9%,COD脱除率:98%;而采用催化裂化的处理成本也相对较低,处理的效果也非常好,值得推广。

经过一系列分析,我们对上述的生产工艺都有了新的认识,经过分析研究,我们发现湿式氧化和间歇式活性污泥生物处理法与催化裂化再生烟气处理法这两种技术比较具有实用性,从效果上来看二者没有明显的区别,但是从实际操作的难度上分析,我们发现催化裂化的方式更加使用,具有一定的技术优势,具有一定的推广价值。

四、结束语

残渣废水是石油化工企业发展的附属品,其严重影响企业的发展与产品的生产,为了倡导绿色环保的理念,我们必须采取必要的措施,加强管理,不断地应用心得技术来提高处理能力,降低成本,增强石油化工行业对残渣废水的处理能力,大力推广新工艺。实现绿色化工。

参考文献

篇6

中图分类号:TU276 文献标识码:A

一、化工企业设备管理的重要性

(一)化工企业的生产特点

化工产品无处不在,世界各处都有它的身影,比如运输行业所需要的各种燃料,服装行业生产时用到的各种化纤原料,机械制造行业需要的各种大量有机材料等等,这些基本上都由化工企业所生产。化工企业属连续化生产,需具备以下特点:

1 化工行业是属于技术密集型的生产企业。它需要多门学科相结合,进行有效合作,并且需要多种专业技术人员的聚集;化工行业的生产工艺是非常复杂的,而且要有高含量的技术要求;像一些石化工业则需要更多的利用催化、高温、高压等技术。

2 化工装置的介质十分复杂。化工企业生产产品时所接触到的介质都是具有相同的特点,易燃、易爆、有毒有害、腐蚀性强等。

3 设备的种类、规格复杂多样。生产工艺的复杂性,再加上生产条件的苛刻性,就需要各种各样的设备来与之相适应。化工企业在生产时大都情况下都需要在高温、高压及密封系统中方可进行。

4 拥有高素质的化工企业人员。复杂的生产工艺、设备,只有拥有一批高素质的专业人员方可实现其安全稳定的生产工作。

5 化工企业的投资量。化工企业的一些生产设备和基本设施,价格都十分昂贵,因此它的资金投入量是十分巨大的。

(二)化工设备运行可靠性的重要性

复杂的生产工艺直接提高了化工企业对生产设备的要求,企业生产运行的基础就是设备,因此设备运行的可靠性就会影响到生产装置是否能够连续稳定运行。设备若存在问题,就会直接性或间接性造成的事故的发生,给企业带来巨大的经济损失,又或者设备存在着一定的缺陷也会造成装置停工,无法正常生产,影响到企业的正常生产流程,企业所蒙受的经济损失也是巨大的。

二、设备运行的可靠性

(一)设备运行可靠性的概念

设备运行的可靠性是由两个部分组成的,即固有可靠性和使用可靠性。固有可靠性的概念是指一个产品经过设计、制造而形成的,狭义可靠性是指它所考虑的中心问题。使用可靠性所要考虑的中心问题就是包括维修性的广义的可靠性,它指的是产品在运输、仓库保管等作用下使固有可靠性所发挥的程度要能够得到切实的保证。

(二)设备运行可靠性时需注意的问题

1 设备运行的可靠性与规定的条件密不可分所谓的规定的条件就是指设备所处的一个环境条件、维护保养和使用条件等。

2 设备运行的可靠性与规定时间密不可分所谓的规定时间,我们可以根据现实中的实际情况,它可以是一次性的动作,也可以是短期的或者是长期的。设备工作的时间在一般情况下与可靠性是成负比例关系的。时间这一重要因素在设备的可靠性方面得到了着重的强调,但是却没有被包括在产品的技术质量性指标中,因此,设备可靠性和其他技术性能指标的根本区别就可以是在规定时间内对其优劣进行的评价。

3 设备运行的可靠性与规定功能密不可分规定功能是设备应该具有的主要技术性能指标,只有对设备的所有技术性能指标进行综合性评价,才能对设备的可靠性做出正确的判断。

三、工企业维修策略研究

(一)实施维修的重点放在提高设备利用率上我们坚持把设备利用率放到第一位来制定维修策略的维修方式。

1 定期维修。就是按照固定的周期进来进行维修的一种体制。这种维修体制有很大的优点,就是提高了利用率,这样就可以把空闲的时间,人力,物力等很好的利用起来,也提高了维修效率,降低了成本。但也有一个很大的问题,这种方法只能针对一些故障特征随时间变化的设备,但如果碰上一些复杂成套、故障无时间规律的设备,这种维修方式就不适合了。

2 视情维修。这种维修体制就是通过设备的状态以此检测出的故障模式来决定的一种维修策略。

3 机会维修。这种维修体制,其实是一种补充体制,建立在视情维修和定期维修的基础上进行的一种补偿维修方式,主要是为了提高费用有效度。我们必须结合生产实际,把握维修时机,如果发生频繁,则应首先考虑定期维修,再依次选择视情维修和事后维修。

4 事后维修。这是一种很笨的维修方法,就是不管遇到什么情况,都等到事后一切的人力、备件、工具上有一定的准备和保障的前提下进行。成本较低,可以当作最后考虑的一种维修策略。

(二)改革维修机构

改革维修机构,首先要做的就是把所有工作人员的积极性提高上来,建立一只具有专业水准和较高的团队合作意识的各类专业维修队伍。例如专业性强的有:理化检测队伍、机组检修队伍、冷换设备清洗检修队伍、带压密封堵漏队伍等等。其中在化工系统中还成立设备失效及预防中心、备检测中心、带压密封堵漏中心同位素仪表维修中心等等,为各类化工企业的设备提供更加具有针对性的专业化维修服务。各个企业内部的检修机构我们也要进行一次改革,特别是那些长期依靠企业生存的维修机构,更应该转换思路,把它们从企业的体制中独立出来,面向市场,实行独立经营、独立核算。增加维修机构的独立意识和市场竞争意识。

(三)采用先进的维修技术

要提高一个企业的设备维修的现代化水平,首先就是要提高人员的知识化水平,学习国内外先进的维修技术,在一些化工企业应用比较广泛的有氩弧焊、离子焊、电刷镀、热喷涂、镶嵌、粘接等一些比较先进的修复技术;各种先进的机械化、自动化维修机具,诸如各种液压吊装、高压清洗等也都已经在企业的设备维修中有了较大的应用。这些现代化技术的运用有两个好处:一是提高了工作效率;二是减轻了劳动强度,保证了维修施工质量。特别是近几年来发展起来的加热炉内衬耐火纤维喷涂及油罐表面刷涂隔热降温、防腐涂料等高新技术在化工企业维修中广泛得到应用,获得了节能的突出效果。

四、设备的维护与技术改造管理

(一)设备的日常维护

制定一套比较完善的设备日常维护的制度标准,要求每班操作工人在生产中做到:每天对设备各部位进行检查,是否按规定加注油,是否正确使用设备,如果发现异常要及时处理,处理的不了的要及时报告给相应的维修部门并且进行登记备案,方便以后维修的查找。

(二)设备的技术改造

设备的技术改造是指应用现代科学技术成就和先进经验,改变现有设备的结构,装上或更换新部件、新装置、新附件,以补偿设备的无形磨损和有形磨损。通过技术改造,我们可以提高设备的各项技术性能,并且是一些设备的局部达到一个比较高的水准甚至与一些新设备相当。使用技术改造有很多好处,最明显的就是它的针对性比较强,经济性比较好,更主要的是它的现实性大,可以最大限度的发挥设备的功能。

五、设备的状态监测与故障诊断技术的应用

(一)设备的点检

设备的点检,主要有两种方式:日常点检和定期点检。我们通常使用的是日常点检,它是一种由人工操作来进行完成的,最主要的特点就是利用人的感官进行检查,一次来判断设备的状态。

(二)设备的状态监测

日前设备状态监测氛围两个步骤,第一是通过人工检查发现一些看得见的问题。第二是通过将设备监测仪器与计算机结合来进行检查。计算机在接收了监测信号后,可以定时显示或打印输出设备的状态参数(如温度、压力、振动等)。这样就可以在很大的程度上保证了设备状态监测的可靠性。而不会应为一些人为因素造成监测的不准确。

(三)设备的在线监测

设备的在线监测,要做好这一点首先要加大培训的力度,培养一批具有专业技术水准的人才队伍,在此基础上还要极开发现有设备在线监测软件和新的状态监测项目。只有具备以上一些条件才可以在开展设备状态监测和故障诊断工作上去的良好的效果。

(四)设备诊断基本技术

设备诊断基本技术,主要包括检测技术、信号处理技术、识别技术、预测技术等。设备寿命周期的长短决定了设备定量测定的各种信息,数据的科学分析和预测的准确性。想要设备的使用寿命得到提高,首先一点就是要做到把诊断技术用于设备使用过程当中的各个阶段,并且要做好对各种数据的收集工作,提高设备各个环节的管理工作水平。设备的管理工作我们要常抓不懈,而不能随着新材料、新技术应用,化工设备的安全性日益提高就放松我们的要求。这样才可以使我们的使设备在使用过程中达到更加安全、高效的运行。

结语

在许多国家的的国民经济中化学行业占有重要地位,它是一个基础产业和支柱产业,化学行业的发展直接影响着社会经济的各个部门。整个世界化工产品年产值已突破了15000亿个美元。因此,我们要不断的对化工企业的设备进行研究,开发出不仅可靠性高,而且安全也一样高的设备,实现化学行业发展走可持续发展道路对于人类经济、社会发展具有重要的现实意义。

参考文献

[1]张亮. 浅谈石油化工企业机械设备运行的可靠性管理[J].世界家苑,2012(08).

篇7

压力管道为石油化工建设的要点内容,管道安装工艺是否规范,将在根本上决定石油化工各项装置的安全性与稳定性。就以往安装经验来看,在作业过程中经常会受外部因素的影响,如现场环境、天气因素、操作人员能力以及施工管理等,导致安装质量达不到专业标准。为改善此类问题,必须要重视安装作业的质量监理。

一、石油化工压力管道安装特点

1.种类多。由于石油化工行业的特殊性,以及其介质的多样性,致使石油化工管道的材料种类多样性,不同的管道材料,所需的焊材、焊接方法、对焊接环境和天气的要求都有所不同。管道材料进场时,应当做好材质标识工作,避免不同材质的混用,造成质量安全隐患。与其他类型管道相比,石油化工压力管道和管件种类更多,包括管子、管件、阀门、法兰、密封垫片、过滤器、安全保护装置、节流装置等。并且,现在市场上存在的管件种类并没有统一的质量标准,不同型号、规格、品牌的管道元件具有很大的差异,所对应的安装技术要求也有较大的区别,如果完全按照统一的方法安装,势必会对安装质量产生影响[1]。2.设计复杂。基于不同种类管道元件的多样性,在对管道安装方案进行设计时,也将要面对更多影响因素,整个方案的编制具有更高的复杂性。并且因为运送介质操作流程的复杂性,想要降低外部因素的影响,就需要从实际情况出发,结合以往成功经验,随时对设计方案进行调整,保证安装作业可以有效进行,整个过程要面临更大的难度[2]。3.技术难。石油化工压力管道的安装与其他类型的管道作业相比,因为其应用方向的特殊性,对安全性和可靠性有着十分严格的要求,因此对于管道安装作业也将要面临更多大的难度。例如受空间限制,设备与管架系统内压力管道分布密集度高,且预制埋深有限,需要设置更多的焊接点。

二、石油化工压力管道安装工艺流程

1.方案设计调整。基于石油化工压力管道的特殊性,在对其进行安装作业时,需要提前做好安装作业方案的编制,并按照专业流程进行操作,提高整个作业过程的有效性。应结合工程安装作业的环境特点,综合分析规模以及设计要求,对安装方案进行对比和调整,然后做好一切准备工作,并根据需求安排好作业人员,以及人员的技能考核和技术交底。2.材料进场验收。安装作业实施所需各项材料比较多,为避免对正式作业流程的影响,需要提前对所需材料构件进行质量验收,包括规格、等级以及其他方面的检验,达到施工标准后进行预制加工。3.构件焊接组装。验收合格后对各管道组件进行焊接处理,并按照专业标准进行检验,确定质量合格后,需要对阀门以及管支吊架进行专业验收,并根据设计图纸和相关顺序完成管件的组装。然后进行焊接与强度测试,保证焊接牢固度达到专业标准,确保管道能够在一定歪理条件下具有较高的安全性。4.防腐与气密性测试。完成上述各环节后需要对管道进行防腐处理,尤其是焊接点位置的处理,对表面存在的残留物以及杂物进行全面清洗,避免有杂物附着在管道表面,降低管道后期使用安全性。最后,还要对安装完成的管道进行气密性检测,确定是否存在泄漏点,对工程项目各节点进行最终质量验收。

三、石油化工压力管道安装质量监理要点

1.工程材料质量监理

1.1进场验收。无论是通过任何方式采购的工程材料,进场时均需要进行质量验收,由施工单位进行自检,自检合格后向监理提交材料进场报验,报验资料中包括材料清单、自检清单、材料质量证明文件等,报监理单位进行审核。由专业监理工程师现场对材料进行外观质量进行检查,特殊材质的管道还需抽样进行无损探伤检测,确认合格后签字确认方可使用。1.2现场试验。石油化工压力管道所有阀门均需要进行试验,包括压力试验、密封试验以及上密封试验等,完成后根据实际情况完成试验报告的填写,并由专业工程师、质量检察员、试验人员等签字报监理备案。另外,对于管道防腐与保温的油漆和保温材料,均需要进行见证送样检测,并由检测单位出具检测报告且盖章。

2.安装流程监理

2.1安装施工准备。石油化工压力管道施工前,施工单位应向监理单位提报工艺管道施工方案,对于特殊材质,或是特殊工艺的管道安装,按实际情况可能要提报专门的施工方案,施工方案审核通过后方可进行施工。所有的焊工必须经过资质审查,施工单位在施工前向监理单位提报特殊工种报验,其中包括人员清单、焊工证件等。2.2工序质量确认。监理人员确定管道焊缝表面质量,无问题后还要根据设计和规范比例抽样进行无损探伤检查,确认后签字。其中,要根据设计方案、焊接专业标准在无损检测合格后,对管道焊接接头进行热处理,无论是何种材质管道均需要进行硬度检测。2.3现场试压试验。按照工艺流程完成管道安装后,对管道进行热处理和无损检测,达到合格标准后对管道系统进行压力试验。正式试验前需要由专业监理工程对试验条件进行检查,确认所有节点均按照设计图纸完成,管道系统检验合格,并准备好相关资料。还要确定管道膨胀节设置好临时约束装置,并完成压力表校验,且在周检期内。2.4管道防腐保温。管道试压试验合格后,还需要对管道进行防腐保温处理,任何隐蔽工程隐蔽处理前,均需要由安装单位进行自检、互检和专职检验,确定达到合格标准后填写相关资料,连同隐蔽工程验收单一同报给监理单位验收,由监理人员现场签字确认后才可进行隐蔽作业。

结束语

石油化工压力管道安装具有一定特殊性,更容易受外部因素的影响,为保证其安装质量达到专业标准,必须要基于实际情况,编制合理且可行性高的工艺管道监理细则,将质量监理工作落实到整个安装流程中,保证各节点实施的规范性与有效性。

参考文献

篇8

中图分类号: TF764+.1 文献标识码: A 文章编号:

2005年,我国NOx排放总量约为1.94×107t。随着国民经济继续发展、人口增长和城市化进程的加快,2020年和2030年,我国NOx排量将分别达到3.00×107t和3.54×107 t[1]。在不锈钢表面处理的生产过程中,广泛采用HF+HNO3混酸酸洗,也会产生高浓度的NOx废气,由于其中NO2的含量较高,一般表现为烟囱“冒黄龙”现象。据中国特钢企业协会不锈钢分会统计,2006年起,我国不锈钢粗钢产量及钢材产量已居世界第一。2004年至2011年的八年之间,我国不锈钢粗钢产量从236.4万吨飙升至1259.1万吨,净增1022.7万吨,年均增长达127万吨,这在世界不锈钢发展史上也是没有过的。面对如此严峻的NOx废气排放形势,必须采取切实可行的方法予以处理。

目前,针对高浓度NOx废气的处理方法主要有干法、湿法和干湿连用技术。湿法主要以各种吸收剂溶解在水中,然后再采用喷淋的方法来吸收NOx并与之反应,最终达到降低NOx浓度的目的[2-5]。湿法实际上是一种“污染转移”的处理方式,并未彻底解决污染治理的问题。干法即SCR法,是指在催化剂存在的条件下,采用NH3、CO或碳氧化合物等作为还原剂,将烟气中的NOx还原为N2和H2O;其中NH3-SCR技术较为成熟可靠,目前已在全球范围,尤其是发达国家中得到广泛应用[6-10]。王海林等[11]详细对比了液体吸收法和SCR法的优缺点,得出结论:采取何种形式的处理方法,一方面取决于废气中NOx的含量和气体组分,另一方面,取决于废气的排放制度。

依据酸洗NOx废气的低温、低尘、高氧化度、高浓度等特点,本文尝试采用“喷淋吸收+预热+换热+加热+SCR反应+换热”的工艺,对某钢厂酸洗线产生的高浓度NOx废气进行工程实际处理,结果显示脱硝效果优异,大大减少了NOx废气的排放,由此可产生巨大的环境效益和一定的经济效益,因此该工艺可以作为示范工程,应用于NOx废气的处理领域。

1. 工艺选择

1.1. NOx废气排放要求

排放烟囱数据应符合《大气污染物综合排放标准》GB16297-1996中的新污染源大气污染物排放限值二级排放标准。NOx排放浓度

1.2. 工艺的选择

1.2.1 混酸酸洗NOx废气和燃煤烟气的区别

混酸酸洗NOx废气和燃煤烟气存在许多不同点,表1是混酸酸洗NOx废气和燃煤烟气的对比表。

表1混酸酸洗NOx废气和燃煤烟气的区别

结合表1中混酸酸洗NOx废气和燃煤烟气的各项比较参数的区别,将会在NOx废气的实际处理工艺上体现差异。

1.排气温度

酸洗NOx废气的排气温度一般最高不会超过60℃,这就决定了需要通过加热NOx废气的方式来达到SCR的反应温度区间。因此,应该尽量选择具有低温催化性能的催化剂,这样,可以最大限度的节省加热及换热设备投资。而燃煤烟气的排放温度区间正好是V/Ti系催化剂的反应区间,因此,无需额外的增加能耗既能够让SCR反应持续。

2.含尘量

酸洗时,脱硝系统收集的废气主要来源于外环境中渗入酸洗槽的空气和酸洗液本身挥发及反应后分解产生的废气,所以,废气中的尘含量与外环境大气中的尘含量基本相当。因此,在酸洗NOx废气脱硝系统的设计时一般不用考虑催化剂的防尘性能。所以,催化剂的节距可以设置的更小。

而在燃煤烟气中,煤质燃烧产生大量的粉尘,这些粉尘和废气一并进入到脱硝系统。因此,在燃煤烟气的脱硝系统设计时,第一层的催化剂一般需要坚硬化或者锐化处理,在SCR反应器内还需要设置吹灰装置,同时,蜂窝催化剂的节距一般都比较大,这样才能基本确保催化剂不被堵塞。

3.NOx浓度

在酸洗NOx废气的排放中,根据酸洗对象的不同,产生的NOx废气浓度可能忽高忽低或持续在高位。因此,在设计脱硝设备时,需要针对NOx废气排放的浓度特征进行针对性的考虑。而在燃煤烟气的排放实例中,燃煤持续的在比较均匀的燃烧环境中燃烧,因此,排放的NOx废气浓度也是比较稳定的。

4.废气中的组分

酸洗NOx废气的组分一般比较简单,主要是HF、NOx、HNO3等。在系统设计时,HF和HNO3在进入SCR系统之前就需要基本完全去除,而SCR系统将被设计为专门去除NOx。

燃煤烟气中除了有NOx之外,还有SOx、CO等其他多种组分。由于SO2和CO等均有可能对NOx的SCR反应进行干扰,严重的甚至可以引起催化剂的中毒。因此,在催化剂的设计时,也要采用针对性的措施,确保NOx催化反应的顺利进行。

5.NOx氧化度

酸洗废气中的NOx氧化度常规在50%左右,最高可达90%以上,这是金属及其氧化物与酸液在一个强氧化环境下发生反应的必然结果。

在燃煤燃烧过程中,NOx的生成机理非常复杂。但是,从总的趋势来看,由于气体的温度比较高,NO2容易分解为NO,同时,N的“争氧”能力也不如C、CH等。综合各种因素之后,最终导致燃煤烟气中的NOx氧化度一般只有10%左右。

1.2.2酸洗NOx废气SCR处理的设计要点

1.酸洗NOx废气中其他污染物的去除

在酸洗NOx废气中,除NOx这个主要污染因子外,还有HF、HNO3(g)等对环境有害的污染物。酸洗NOx废气中产生的HF浓度在1000mg/m3以下,HNO3(g)浓度在2000mg/m3以下。而两种气体都极易溶解于水。因此,常规的处理工艺都是采用水或者稀碱液来吸收以上两种污染物,去除率可高达99%以上。一般采用填料洗涤塔来吸收HF和HNO3。填料洗涤塔的空速控制在0.8~1.8m/s左右,填料可选用高比表面积的规整填料,比表面积最高可达500m2/m3,理论塔板数可达4~4.5m-1,可节省塔体高度,提高吸收能力。

2.防结露与废气预热及加热

由于酸洗NOx废气的排放温度一般在常温(20~60℃)之间,而SCR反应的温度区间则在200~400℃之间,因此,一般通过换热器预升温后,再通过燃气升温或者电加热升温即可达到反应温度。换热器内的高温气体来自SCR反应器处理后的尾气。

板式换热器的换热元件一般采用波纹板,板厚在0.6~1.5mm之间,板间距在3~41mm之间自由选择,总压损一般在1~3 KPa之间。在同等换热能力下,板式换热器的体积和重量均只有管壳式换热器的1/3左右。

一部分SCR反应器处理后的高温尾气引入到吸收塔后、换热器前的管道上,将进入换热器的温度提高10~30℃左右,从而避免废气的湿度饱和,也有效的阻止了结露。

3.还原剂的选择

还原剂一般采用氨基,目前,市面上主要有液氨、氨水和尿素三种还原剂。

表2 液氨、氨水和尿素的比较表

注:(1)还原剂价格为2012年9月份上海市场价,氨水价格因地区差异变动较大。

(2)折合氨单价未考虑原料含杂质情况。

通过上表可以看出,液氨的使用要求和管理要求均较高,初始投资也较高,但是运行费用较低。然而,液氨在使用时一般不允许用尽,所以当液氨采用现场储罐形式供应时,液氨的使用成本是较低的。而采用液氨钢瓶供应时,钢瓶内经常残留部分液氨,该部分液氨不允许回收。同时,液氨对于环境安全的要求非常高,操作人员也需要具备特种作业人员的资质。因此,在实际项目中,尿素已经逐步成为一种主流的还原剂,广泛应用于各种SCR场合。

4.催化剂的选择

SCR系统中,催化剂是最关键的核心部分。由于酸洗NOx废气具有低温、微尘、不含SO2及CO等、浓度高或者浓度波动大、氧化度高等特点,在催化剂的选择上,需要尽量选择低温型的催化剂,同时,不用过多的考虑飞灰、SO2等带来的不利影响。在催化活性上,也要更加倾向于NO和NO2的联合去除。

目前商用的催化剂类型主要是蜂窝式催化剂。而蜂窝式又可分为两种,一种是燃煤电厂经常使用的V/Ti系催化剂,一类是上海同济科蓝环保设备工程有限公司生产的具有低温特性的GJ-HC型催化剂。下表是两种催化剂的对比。

表3 两种蜂窝式催化剂的比较

从表3中可以得出,在酸洗NOx废气的SCR处理中,由于无需考虑飞灰影响,因此可选用较低节距的金属氧化物蜂窝陶瓷催化剂,提高反应空速,降低使用量。同时,与V/Ti系催化剂相比,金属氧化物催化剂的最佳反应区间整整降低了100℃,极大的节省了废气加热所需的能源,同样的,低温反应也相应的延长了设备的使用寿命。

2. 工艺流程及说明

2.1 工艺设计

根据某不锈钢厂的设计要求、工程设计规范、能源介质条件,并考虑当地的气候条件进行工艺设计。

2.2 设计工艺流程

酸洗NOx废气从酸洗槽中通过收集管道集中到一根总排管道中,进入SCR处理系统。工艺流程图如图1所示:

酸洗槽排出的NOx废气首先进入填料洗涤塔内,去除大部分的HF和HNO3之后,通过酸雾风机送入前置预热器内进行预热,随后进入气气换热器中进行换热升温,升温后的废气再通过燃气烧嘴加热到反应温度,此时,尿素喷入尿素喷射混合器内,迅速雾化成细微颗粒,并在高温环境下热解为NH3和CO2,再与NOx废气在四阶段混合器内进行充分的混合之后,继而进入SCR反应器内进行SCR反应。反应后的尾气一部分进入气气换热器内放热,一部分直接回到前置预热器内与进气混合。放热后的尾气排入烟囱。

图1 NOx废气SCR法处理工艺流程图

3. 运行效果及处理成本说明

3.1 运行效果

在SCR系统运行时,当地环境监测部门对该项目进行了监测,主要监测项目为排气温度、标干排气量、NOx浓度及排放速率、HF浓度及排放速率、NH3浓度及排放速率等,结果见表4。

表4 各监测指标的监测结果

注:ND,未监测到。

3.2 处理成本说明

SCR系统运行时,运行费用见表5,NOx处理费用见表6:

表5运行费用分析表

表6处理费用分析表

4.结论

1.由脱硝系统运行工况和实际运行效果来看,脱硝效率及各种相关参数都符合设计要求。

2.本SCR脱硝系统设计成熟,系统运行可靠,稳定性较好,脱硝效率较高。

3.本项目实施的意义:大大减少了NOx废气的排放,减轻了其对环境的危害,产生了优异的环境效益;减少了因NOx废气产生的污染而花费的治理费用,间接的产生了一定的经济效益。

参考文献

[1] 张楚莹,王书肖,邢佳,等.中国能源相关的氮氧化物排放现状与发展趋势分析. 环境科学学报. 2008, 28(12):2470-2479.

[2] 王军,曾庆福,陈磊,等.间歇式高浓度氮氧化物废气的治理技术.武汉科技学院学报.2003, 16(5):26-31.

[3] 孙永强,陈建孟,宋爽.旋流板塔处理含氮氧化物废气的工程实践.科技通报.2007,23(5):751-754.

[4] 任晓莉,张卫江,杨宝强,等.工业废气中氮氧化物的治理研究.环境工程学报.2007,1(6):87-90.

[5] 梁开玉,周应林,秦大超.硝酸尾气中氮氧化物净化技术研究.渝州大学学报(自然科学版).2002, 19(3):27-31.

[6] Pio F.Present status and perspectives in de-NOx SCR catalysis,Applied Catalysis A:General, 2001, 222(1-2):221-236.

[7] 覃秀凤.氨选择性催化还原处理硝酸尾气NOx工艺优化探讨.广西工学院学报.2009,20(1):52-56.

[8] 赵明,张奇兵.选择性催化还原脱硝法(SCR)治理硝酸尾气的应用.化学工程师.2010,172(1):38-39,42.

篇9

1.1 微胶囊技术的作用[4—7]

无论物质具有亲水性还是具有亲油性,大多数气体、液体、固体、甚至具有生命活性的细菌、酶等均可以被包囊。广义地说,微胶囊具有改善和提高物质外观及其性质的能力。

上述功能使得微胶囊化成为许多工业领域中的一种有效的商品化方法,具体可主要分为7个方面。

1.1.1 改善物质的物理性质

    改变物质的状态:将液态物质或气态物质微胶囊化后,可得到微细的粉状物质,在外形及使用上具有固体特征,但其内部仍然是液体或气体,因而仍具有原来液体或气体的性质。

    改变物质的质量和体积:物质的表观密度经微胶囊化后可以变小,也可制成含有空气或空心的微胶囊而使体积增大。

    改变物质的性能:通过微胶囊化可以改变物质对所处介质的亲和性,常用的方法是将疏水性药物用亲水性壁材微胶囊化,使其变得亲水。

1.1.2 控制释放

在可以人为控制的条件下,微胶囊中活性组分的释放可以采用立即释放、延时释放等各种释放方式。

缓释:将一些药物或活性物质制成微胶囊后,不但方便口服或注射,更重要的是能使药物缓慢释放,使药效持久,从而可减少服用次数和服用量,减少生理副作用。

1.1.3隔离活性成分

微胶囊化后囊壁可以将囊内外物质隔离,故能阻止活性物质之间发生化学反应。在医药中,可将药物与其他敏感物质隔离,如红霉素遇酸易变质,微胶囊化后可在一定时间内避免与胃液接触,从而使其保持活性。

1.1.4 改善稳定性

易挥发、易氧化、光敏性和热敏性的物质经微胶囊化后,可避免直接与光、热或空气接触,抑制其挥发,氧化,降低光(热)敏性。有些物质很容易受氧气、温度、水分、紫外等各种环境因素的影响,通过微囊化,使囊心物与外界环境相隔离。在食品、化妆品和洗涤剂行业中,经常将香料、香精微胶囊化,以降低其挥发性,保持长久散发香气。

1.1.5降低对健康的危害、减少毒副作用

   硫酸亚铁、阿司匹林等药物包囊后可以通过控制向消化系统得释放速度来减轻肠胃副作用。长期服用氨节青霉素对人体有严重的副作用,微胶囊化可弥补这一缺陷;抗癌药物化疗剂一般用甲基乙二醛,但对人体毒性大,微胶囊化后可以迅速从体内排出,降低副作用。对于制药工业来说,就可以采用微胶囊技术来制造靶制剂,达到定向释放的效果。

1.1.6屏蔽味道和气味

微胶囊化可以用于掩饰某些化合物的令人不愉快地味道。抗生素磺胺类药物苦味太大,微胶囊化可掩盖其苦味。氨基酸有维持机体生长发育的氨平衡功能,能治疗肝病及乙基砷、苯中毒,但其奇特的臭味使人难以接受,微胶囊化后,就可掩盖其臭味将有色泽和气味的中草药液微胶囊化后,可以掩蔽服用时的不良味道。

1.1.7 用于特殊目的的不相容物质的分离

微胶囊化后可以隔离各种成分,阻止活性成分之间的反应。故可以将两者一起保存。但是当微胶囊破碎以后两者就能进行反应。可以达到某些特殊的目的。

1.1.8 菌体微胶囊的特点

对于制备菌体微胶囊,最主要的就是防止外界不良条件对菌体的破坏以提高菌体的稳定性,提高菌体的保存时间。一些菌体,在环境中受到不良环境的影响(紫外线、pH等)其存活率很低。而通过微胶囊技术可以将菌体与不良环境隔离,达到提高菌体稳定性的作用。

例如胃中的pH只有1.8左右,对枯草芽孢杆菌活性具有比较大的破坏。而制成微胶囊可以减少胃酸与菌体的接触,提高菌体的稳定性[8]。

另外通过微胶囊技术将菌体包埋,使得菌体某些不良的气味难以释放到外界,而达到容易口服等的效果。

1.2 微胶囊的制备方法

微胶囊制备方法通常根据其性质、囊壁形成的机制和成囊条件分为物理法、物理化学法、化学法等3大类[9]。在每大类方法中依据不同的操作工艺又可进一步分成若干种制备方法。各种制备方法都具有各自的特点、适用范围和适用对象,现将各种微胶囊制备方法归纳如表1所示。

表1 物理法制备微胶囊

方法               工艺特点               优缺点                适用范围

喷雾干燥法    芯材均匀分散于壁材溶液中,     优点:处理量大,     适于热敏性、疏水                                        

          经雾化器雾化成小液滴使溶液       适宜工业化生产     性、亲水性及与                                          

          壁材的溶剂迅速蒸发凝固成凝     缺点:包埋率低,     水反应的物质。                                                        

          固成微胶囊。                     设备大,价格高,                                     

                                           耗能大等。                      

喷雾冷却法   芯材均匀分散于壁材中,加热     优点:对水溶性风味物  敏感性物质、食品                                                                     

         熔融后迅速降温凝固成微胶囊。      质具有良好的缓释   添加剂、油脂等。                                                          

                                           和保护作用。                                

  挤压法      糖类物,然后通过压力将其挤   优点:防止风味物质挥发  适于热敏感性芯材   

              入冷却介质中,迅速脱水降温,                                                                                  

              形成玻璃态微胶囊。            缺点:产率低。                                                           

包络接合法  先将芯材与壁材各制成带相反    优点:干燥下产品稳定。  油脂等物质。                                           

         电荷的气溶胶微粒,而后使它                                                                           

         们相遇,通过静电吸引凝结成                                                                     

         微胶囊。                                                                             溶剂蒸发法  芯材、壁材依次分散于有机相      优点:操作方便,可以   适于非水溶             

        中,加热使溶剂蒸发,壁材析       大规模生产。          性聚合物对活                    

        出而成微胶囊。                                         性物质的包裹                             

物理化学法的共同特点是改变条件使溶解状态的成膜材料从溶液中聚沉出来,并将囊心包覆形成微胶囊。即通过改变温度、pH值、加入电解质等,使溶解状态的成膜材料从溶液中聚沉,并将芯材包覆形成微胶囊。凝聚法又称相分离法,根据芯材的水溶性不同可分为水相分离法;依据凝聚机理的不同又分为单凝聚法和复凝聚法。化学方法和物理化学方法一般通过反应釜即可进行,因此应用较多,见表2。

表2 物理法制备微胶囊

方法                工艺特点                    优缺点            适用范围

界面聚合法     将两种带有不同活性基团  优点:包封率高,能很好的  适于活性物                                                            

                  的单体分别溶解在互不相        保护活性物质。      质。                                          

                  溶的溶剂中,当一种溶液  缺点:要求被包裹物能耐酸                                                       

                  被溶解在另一种溶液中时,      碱性,不能与单体发                                                   

                  两种溶液中的界面会形成        生反应,并对多余单                                                 

                  聚合物膜 。                    体要认真对待。                                    

   原位聚合法     单体、引发剂或催化剂以  缺点:要求单体是可溶的,  适于气态、液                                                             

                  原位处于介质中,加入单        而聚合物是不可溶的。态,水溶性和                                    

                  体的非溶剂使单体沉积在                           油溶性的单体                 

                  原位颗粒表面上,引发聚                                              

                  集形成微胶囊。                                                         

   锐孔法         聚合物溶解,加入活性物  优点:操作简单,不使用有  适于对紫外光                                                                      

                  质分散其中,将分散液用        溶剂。无需高速搅拌,敏感的物质。                                                               

                  锐孔装置加到另一液体中        微胶囊机械性好。                                                          

                  胶囊析出。                                                                    

1.2.1微胶囊芯材

芯材是微胶囊中起主要功能的物质。它可以是单一的固体、液体或气体,也可以是固一液、液一液、固一固或气一液混合物。根据不同的行业,不同的用途,芯材有不同的选择。它可以是化工产品、医药用品,也可以是食品添加剂或是食品的天然组份。现己用作芯材的物质有:胶粘剂、催化剂、除垢剂、增塑剂、稳定剂、油墨、涂料、染料、颜料、溶剂、液晶、金属单体、油脂、香料等。微生物作为一类特殊的活性物质,也开始广泛用于芯材,发挥其特有的功效。表3为常用的微胶囊的芯材[10]。

表3 常用的囊芯材料

类别                                    物质

食品                              油、脂肪、调味品、香料

药物                              阿司匹林、维生素、氨基酸

香料                              香精、薄荷油、专用组分

农药                              杀虫剂、除草剂、肥料

色素                              燃料颜料、无碳复写纸的无色染料

生物品                  细胞、酵母、酶、血红蛋白、病毒、纤维素

其他                    相变材料、无机粉体、金属、粘土、纤维素

1.2.2壁材(囊材)

制作微胶囊可用的壁材很多,一般为天然高分子材料或有机合成材料,可以是亲水性的或疏水性的高分子材料,也可以是无机化合物。这些材料的最大特点是具有一定的成膜性,且在常温下比较稳定[11]。表4为常用的壁材[12]。

表4 常用的囊材材料

类别                  物质                       优势

天然高分子材料        明胶、阿拉伯胶、淀粉、果胶     稳定性好、成膜性好、生

                      糊精、海藻酸钠盐、糖类         物相容性好、力学性能差

合成高分子材料        羧甲基纤维素、甲基纤维素、    

                      乙基纤维素、聚乙烯、聚苯乙      成膜性好、化学稳定性好、

烯、聚醚、聚脲、聚乙二醇、     生物相容性差

聚乙烯醇、聚酰胺、聚丙烯酰

胺、聚氨酯、聚甲基丙烯酸甲酯    成膜性好、化学稳定性好、

无机材料              铜、镍、银、吕、硅酸盐、玻璃、 生物相容性差

                      陶瓷 

天然高分子材料是最常用的囊材与载体材料,因其稳定、无毒、成膜性或成球性较好。目前在饲料行业应用较多的有明胶、海藻酸、氢化植物油等。

(1)明胶:明胶是氨基酸与肤交联形成的直链聚合物,通常平均相对分子质量在1500-2500之间。可生物降解,几乎无抗原性,用作微囊的用量为20-100g/L,用作微球的量可达200g/L以上。

(2)海藻酸盐:系多糖化合物,常用稀碱从褐藻中提取而得。海藻酸钠可溶于不同温度的水中,不溶于乙醇、乙醚及其它有机溶剂;不同相对分子质量的粘度有差异。可与甲壳素或聚赖氨酸合用作复合材料。因海藻酸钙不溶于水,故海藻酸钠可用CaCl2固化成微胶囊。

(3)蛋白类:常用作载体材料的有白蛋白(如人血清白蛋白、小牛血清白蛋白)、玉米蛋白(玉米肮)、鸡蛋白、小牛酪蛋白等,可生物降解,无明显的抗原性,常采用加热固化或化学交联剂(如甲醛、戊二醛或丁二烯)固化,通常用量在300g/L以上。

(4)氢化植物油:以植物来源的油,也包括从鱼和其它动物来源的油经过精制、漂白、氢化脱色和除臭喷雾干燥得。在药剂中起、缓释作用[13]。半合成高分子多系纤维素衍生物,如梭甲基纤维素、邻苯二甲酸纤维素等。其特点是毒性小、粘度大、成盐后溶解度增大;由于易水解,故不宜高温处理,需临用时现配。现在市面上用的较多的是乙基纤维素。

合成高分子材料常用的有两类,可生物降解和不可生物降解的。近年来,可生物降解并可生物吸收的材料受到普遍的重视并得到广泛的应用。如聚氨基酸、聚乳酸、聚丙烯酸树脂等。

在选择壁材时还要考虑壁材本身的性能,如渗透性、稳定性、机械强度、溶解性、可聚合性、电性能、吸湿性及成膜性等,对于生物活性物质的芯材,还要着重考虑壁材的毒性,与芯材的相容性。此外,微胶囊的制备,以天然高分子材料作壁材制备微胶囊的很多,这类壁材具有无毒、成膜性或成球性较好、免疫原性低、生物相容性好、可降解且产物无毒副作用等优点,其资源丰富、制备简单、价格便宜,极具开发潜力,因此,它是目前最常用的微胶囊制备材料。

1.2.3微生物微胶囊

从20世纪80年代开始就有研究者进行微生物细菌微胶囊的探索,研究较多的细菌有双歧杆菌、乳酸菌、苏云金杆菌、白僵菌等。目前,国内外已经有多种微胶囊化技术应用在微生物领域,主要包括:

(1)锐孔一凝固浴法[14]

革兰氏阴性菌微胶囊制备技术的研究国外利用锐孔一凝固浴法制备,最早主要是海藻酸钙的单层包埋,逐渐发展成为多层包埋。

(2)流化床包膜法

将菌体浓缩液或经冷冻干燥后的干菌粉通过挤压制成球状干颗粒,在流化床上用肠溶性材料(海藻酸钠等)喷雾涂膜,产品室温贮藏时涂膜的比未涂膜的存活率高40倍,在低pH下贮藏时涂膜的存活率也较高。

(3)熔化分散冷凝法

例如将双歧杆菌菌粉分散于融点高于体温的硬化油中,搅拌均匀后喷雾,能够得到一定粒径,且菌体较稳定的微胶囊。

(4)乳化交联法

例如将双歧杆菌冻干粉与壳聚糖溶液混匀,并悬浮于大豆色拉油中(以SPan85为乳化剂),乳化后加入对苯二甲酞氯交联反应,制备了双歧杆菌微胶囊[15]。

(6)喷雾干燥法

喷雾干燥是食品工业应用最为悠久、最为广泛,也是成本极为廉价的一种微胶囊方法。不少研究也尝试了应用于益生菌的微胶囊化。例如在魏华等[16-17]喷雾干燥微胶囊化保加利亚乳杆菌和嗜热链球菌的研究中,喷雾干燥的同时形成微胶囊有利于提高菌体在喷雾干燥过程中的性,从而提高活菌存活率,达到78%;而且喷雾干燥的微胶囊产品活菌数随保藏时降的速度缓慢,活菌保存期显著延长。

(7)吸附法

以淀粉和碳酸钙粉末吸附微囊化的双歧杆菌在干燥过程中死亡率明显下降,在室温条件下保存其存活率比未微囊化的有较大提高[16]。

(8)原位聚合法

袁青梅等[18]以蜜胺树脂作为囊壁材料,使用原位聚合法对生物农药阿维菌素进行制备微胶囊制剂.结果表明蜜胺树脂是较好的生物农药用微胶囊缓释剂型的囊壁其制备工艺简单,具有良好的的外观形貌、粒径大小分布、稳定性、悬浮性等,包封83.24%, 与未经包囊的阿维菌素相比具有良好的缓释性能。

(9)双层包埋法(复凝聚法)

陈健凯等[19]采用双层包埋法,以牛奶蛋白为内层包埋剂,卡拉胶和刺槐豆胶为包埋剂对嗜酸乳杆菌和干酪乳杆菌进行双层包埋。乳酸菌在pH=2.1胃酸环境的存包埋嗜酸乳杆菌为87%,包埋干酪乳杆菌为90%,未包埋乳杆菌不耐强酸,几乎全部死亡。包埋乳酸菌加入到酸奶中,在储藏期的第9天,包埋嗜酸乳杆菌存活率为57%,包埋干酪乳杆菌存活率为50%,而是热链球菌存活率为3.2%,保加利亚乳杆菌存1.3%。显示出包埋后的乳酸菌稳定的生物活性。

1.2.4 枯草芽孢杆菌介绍

枯草芽胞杆菌( B a c i l l u s  s u b t i l i s )是一种自然界广泛存在的杆状,单细胞,无荚膜能运动的革兰氏阳性菌,芽胞小于或等于细胞宽,椭圆至圆柱状,中性或近中性,严格好氧。在液体培养基中生长时,常形成皱醭。

枯草芽胞杆菌其作用的机理主要为消耗肠道内多余的氧,并能产生过氧化氢、细菌素,建立微生态平衡,促进有益厌氧微生物的繁殖,抑制有害细菌(大肠杆菌、沙门氏杆菌)的生长,从而预防腹泻、下痢等肠胃道疾病。

菌体在快速繁殖过程中,能产生大量多种维生素、有机酸、氨基酸、蛋白酶(特别是碱性蛋白酶)、糖化酶、脂肪酶、淀粉酶等酶类,能降解植物性饲料中复杂的有机物,从而促进消化吸收,提高饲料利用率,防止动物消化不良,出现“饲料便”等状况发生[20]。

由于枯草芽孢杆菌以上作用,其在动物饲料添加剂中的研究和应用,一直都是畜牧、水产养殖业科研和生产人员关注的焦点。

随着人们对饲料中添加抗生素作为生长促进剂的弊端认识的加深, 作为饲用抗生素替代品的益生菌制剂受到了众多关注并获得了广泛的应用。由于饲料加工及贮运过程中对菌体的灭活作用, 近年来研究热点都集中在如何提高益生菌制品的稳定性上 [21]。

    通过不断的科学研究发现,将菌体微胶囊化能够很大程度的提高菌体的稳定性。经过微胶囊化后的枯草芽孢杆菌在外界同样条件下能够保持较高的菌体稳定性和活性。

2 实验部分

本实验所涉及到的主要实验材料见表5,实验仪器见表6 实验仪器

表5 实验材料

试剂               纯度                        生产厂家

明胶              化学纯                国药集团化学试剂有限公司

海藻酸钠          化学纯                福建泉州市全港化工厂

壳聚糖            化学纯                浙江大学微生物实验室提供

黄原胶            化学纯                浙江大学微生物实验室提供

吐温 80           分析纯                上海化学试剂有限公司

Span 85           化学纯                国药集团化学试剂有限公司

无水氯化钙        分析纯                中国衢州巨化试剂有限公司

磷酸氢二钾        分析纯                上海化学试剂有限公司

无水硫酸钠        分析纯                上海化学试剂有限公司

甲醛              37-40%                国药集团化学试剂有限公司

冰乙酸            >99.5%                国药集团化学试剂有限公司

硫酸锰            >99.0%                天津市博迪化工有限公司

孔雀石绿                                中国上海标本模型厂

表6 实验仪器

仪器              型号                        生产厂家

数显恒温水浴锅        HH-4                 上海精风仪器有限公司

恒温磁力搅拌器        85-2                 上海志威电器有限公司

 生化培养箱            SPX-250              上海跃进医疗器械厂

恒温培养振荡器        SKY-2100C            上海苏坤实业有限公司

电热鼓风干燥箱        GZX-9023MEB          上海市实验仪器总厂

电子天平              BS-110S              北京赛多利斯天平有限公司

洁净工作台            SB-JC-LB-Z     上海博讯实业有限公司医疗设备厂     

生化培养箱            SPX-250B-Z     上海博讯实业有限公司医疗设备厂

立式压力蒸汽灭菌器    YXQ-LS-SII     上海博讯实业有限公司医疗设备厂

生物显微镜            XSD—9               上海光学仪器厂

2.1 菌种

本实验所使用的菌种——枯草芽孢杆菌,由浙江科技学院微生物实验室提供——斜面、半固体保藏菌种。

2.2 培养基

斜面培养基:牛肉膏3g;蛋白胨10g;氯化钠5g;琼脂20g;水1000ml;pH7.0-7.2。

平板培养基:牛肉膏3g;蛋白胨10g;氯化钠5g;琼脂20g;水1000ml;pH7.0-7.2。

液体培养基:牛肉膏3g;蛋白胨10g;氯化钠5g;水1000ml;pH7.0-7.2。

促芽孢培养基:

:土壤浸出液1000mL;牛肉膏6g;蛋白胨5g;pH7.0-7.2[24]。

:蛋白胨10g;氯化钠3g;水1000ml;MnSO4 2.0g;pH7.0-7.2。

:牛肉膏12g;氯化钠5g;水1000ml;MnSO4 0.5g;pH7.0-7.2。

2.3 微胶囊芯材制备

实验分别制备了枯草芽孢杆菌固体粉末以及枯草芽孢杆菌芽孢固体粉末作为制备微胶囊的芯材。

2.3.1 菌种芯材制备

取保藏备用的试管斜面菌种接种于试管斜面培养基上活化备用,活化后接入平板培养基。为了获得大量的菌体,将平板上的菌体刮下接种到液体培养基(250ml锥形瓶),在200r/min,37℃条件下摇床培养2d。离心(5000r/min)获得菌体,并在鼓风干燥箱30℃条件下烘干,制得枯草芽孢杆菌菌体干粉备用。

2.3.2芽孢芯材制备

将活化后的菌株分别接种于促芽孢液体培养基中。在200r/min,37℃条件下摇床培养2d。离心(5000r/min)获得菌体,并在鼓风干燥箱30℃条件下吹干,制得枯草芽孢杆菌芽孢干粉备用。

2.4  微胶囊的制备方法

为了比较不同方法制备得到的微胶囊的性能,本实验分别采用锐孔法以及倾注法制备单凝聚微胶囊和复凝聚微胶囊[25]。

2.4.1 单凝聚法制备微胶囊

以明胶作为囊材

称取一定量的明胶用去离子水泡胀,并于50℃水浴下溶解,将0.1g枯草芽孢杆菌固体粉末加入到明胶水溶液中,搅拌形成乳化分散体系。保持体系温度为50℃,用10%醋酸溶液调节体系的pH为3.5-3.8,然后向体系缓缓加入20%浓度的硫酸钠溶液[26]。

锐孔法:待溶液冷却到30℃后,吸取溶液并用注射针头将溶液滴入到10%浓度的5℃的甲醛溶液中。

倾注法:待溶液冷却到30℃后,吸取溶液并将其喷雾到10%浓度的5℃的甲醛溶液中。

将得到的微胶囊用水洗除去甲醛,即得到成品微胶囊。

以壳聚糖为囊材

吸取1ml的乳化剂吐温80于含有100ml去离子水的烧杯中,温度保持在50℃。称取一定质量的壳聚糖加入上述的烧杯中,用10%的乙酸溶液溶解配置成溶液,加入0.1g枯草芽孢杆菌固体粉末混合均匀[27]。

锐孔法:吸取混合均匀后的混合液,用不同孔径大小的针头将其分别滴入Na2SO4、K2HPO4溶液中固化。

倾注法:吸取混合均匀后的混合液,将其分别喷入20%浓度的Na2SO4和20%浓度的K2HPO4溶液中固化。

以海藻酸钠为囊材

   吸取1ml的乳化剂吐温80于有100ml去离子水的烧杯中,温度保持在60℃。称取一定质 量的海藻酸钠加入上述烧杯中配制成溶液,加入0.1g枯草芽孢杆菌固体粉末混合均匀 [28]。

锐孔法:以CaCl2作为固化剂,吸取混合均匀后的混合液,用不同孔径大小的针头将其分别滴入1.5M的CaCl2溶液中固化。

倾注法:吸取混合均匀后的混合液,将其分别喷入CaCl2溶液中固化。

„以黄原胶为囊材

吸取1ml乳化剂吐温80到烧杯中,加入100ml去离子水,温度保持在60℃。称取一定质量的黄原胶加入烧杯中配置成溶液,加入0.1g枯草芽孢杆菌粉末混合均匀。

锐孔法:以CaCl2作为固化剂,吸取混合均匀后的混合液,用不同孔径大小的针头将其分别滴入CaCl2溶液中固化。

倾注法:吸取混合均匀后的混合液,将其分别喷入CaCl2溶液中固化。

⑤以琼脂作为囊材

配置不同浓度的琼脂溶液,待冷却到50℃后加入0.1g菌体粉末/芽孢混匀。分别用锐孔法、倾注法制备微胶囊。

锐孔法:将混合液用不同孔径大小的针头滴入到冰水中。

倾注法:吸取混合液,将其喷入冰水中。

2.4.3 复凝聚法制备微胶囊

通过单因子试验获得了单凝聚法制备微胶囊的数据,通过分析发现微胶囊的机械性能有待进一步改进,为了提高微胶囊的机械性能和菌体的稳定性能,选择两种或者两种以上囊材来制备微胶囊。

壳聚糖与黄原胶组合

配置不同浓度的壳聚糖溶液和黄原胶溶液,等体积混合均匀后加入0.1g枯草芽孢杆菌固体粉末混合均匀,并分别以锐孔法和倾注法制备微胶囊。以Na2SO4作为固定剂。

壳聚糖与海藻酸钠组合

配置不同浓度的壳聚糖溶液和海藻酸钠溶液,等体积混合后加入0.1g枯草芽孢杆菌粉末,以CaCl2为固化剂,并分别以锐孔法和倾注法来制备微胶囊。     

海藻酸钠与明胶组合

配置不同浓度的海藻酸钠和明胶溶液,等体积混合均匀后加入0.1g枯草芽孢杆菌粉末。以CaCl2为固化剂,并分别以锐孔法和倾注法来制备微胶囊。

„明胶与黄原胶、海藻酸钠组合

配置不同浓度的黄原胶、明胶、海藻酸钠溶液,将黄原胶与明胶等体积混合后加入等体积的海藻酸钠。以CaCl2为固化剂,并分别以锐孔法和倾注法来制备微胶囊。

2.5 微胶囊品质检验方法

包埋率=〔a-b〕/a×100%                        公式(1) [29-30]

式中: a—制备微胶囊前溶液中细菌的浓度

      b—微胶囊制备后所测得固定剂中菌体的浓度。

微胶囊直径测定方法:

倾注法微胶囊粒径测定方法:在光学显微镜下,取微胶囊用显微测微尺随机测定20颗微胶囊粒径,并取其平均值即为粒径( 单位为µm)。

锐孔法微胶囊粒径测定方法:用精度为1mm的直尺测量,随机测取20颗微胶囊的直径,并取其平均值( 单位为mm)。

活菌数测定方法:分别测定微胶囊化枯草芽孢杆菌活菌数和未经微胶囊化的活菌数。

测定微胶囊化的活菌数:称取0.1g微胶囊粉碎,置于10ml生理盐水中。稀释一定的倍数后涂平板测定活菌数[31],并做3次平行试验。

测定未微胶囊化的活菌数:在平板上取菌,并置于10ml生理盐水中。稀释一定的倍数后涂平板测定活菌数,并做3次平行试验取平均值。

3 实验结果与讨论

3.1 芯材的选择

3.1.1促芽孢培养基的优化

为了提高枯草芽孢杆菌在制备微胶囊以及保存过程中的稳定性,选择使用枯草芽孢杆菌芽孢作为微胶囊的芯材。

实验对三种促芽孢培养基:

:土壤浸出液1000mL;牛肉膏6g;蛋白胨5g;pH7.0-7.2。

:蛋白胨10g;氯化钠3g;水1000ml;MnSO4 2.0g;pH7.0-7.2。

:牛肉膏12g;氯化钠5g;水1000ml;MnSO4 0.5g;pH7.0-7.2。

进行了实验分析。通过实验观察以及每6小时一次的芽孢染色发现促芽孢培养基对促进枯草芽孢杆菌产芽孢没有明显的效果;促芽孢培养基在接种24小时候才明显有菌生长,而且促产芽孢能力也不强;促芽孢培养基能够非常有效地促进枯草芽孢杆菌产芽孢,详见表7。

通过表7得到促芽孢培养基:牛肉膏12g;氯化钠5g;水 1000ml;MnSO4 0.5g;pH7.0-7.2,能够非常有效地促进枯草芽孢杆菌具体的生长以及促进芽孢的产生。在培养12h后就有75%的菌体产生了芽孢。

表7不同培养基促产芽孢比较(以芽孢率表示)

培养基\培养时间\h       6      12      18      24     30     36

牛肉膏蛋白胨培养基                      7%     30%     55%    70%

号促芽孢培养基                        15%     50%    60%    70%

号促芽孢培养基                        30%     40%    60%

号促芽孢培养基                50%     75%     80%    90%    90%

注:芽孢率——芽孢染色后随机选取5个视野,计算芽孢数量和菌体数量并各取平均值。芽孢数/(菌体数+芽孢数)即为芽孢率。

3.1.2  芯材的选择

     芽孢与菌体相比,芽孢最主要的特点就是抗性强,对高温、紫外线、干燥、电离辐射和很多有毒的化学物质都有很强的抗性。而实验也证明了选择枯草芽孢杆菌芽孢作为枯草芽孢杆菌微胶囊的芯材也提高了菌体在制备、保存等过程中的稳定性。

在实验过程中,分别比较了枯草芽孢杆菌菌体和芽孢在制备过程中对制备操作的影响。通过实验比较,在制备过程中使用的芯材都是菌体和芽孢的固体粉末,外观等性质几乎相同,对制备过程中各个环节的影响几乎没有明显的区别。

通过微胶囊稳定性的比较以及制备过程中菌体和芽孢对制备的影响等综合因素的考虑得出:选择枯草芽孢杆菌芽孢作为枯草芽孢杆菌微胶囊的芯材有利于提高微胶囊中菌体的稳定性,延长保存时间。

3.2 固定剂的选择

实验分析了不同浓度的固化剂:甲醛、Na2SO4、K2HPO4、CaCl2对微胶囊机械性能的影响。通过实验发现:

以明胶作为囊材时,以10%甲醛作为固化剂最佳。在高于10%浓度情况下固话效果有一定的提高。但是在材料使用、去除微胶囊表面甲醛等因素综合影响下,选择10%浓度的甲醛作为固化剂最佳。

以壳聚糖桑为囊材时,以20%的K2HPO4作为固化剂制备得到的微胶囊较均一,以20%的Na2SO4作为固化剂制备得到的微胶囊颗粒,机械性能较差,且不均一。

分别以海藻酸钠、黄原胶为囊材时,1.5M CaCl2的固话效果最佳。以壳聚糖和黄原胶作为囊时,以20%的K2HPO4作为固化剂的效果最佳,制备得到的微胶囊比较均一。

3.3包埋率的测定

实验中分别利用锐孔法和倾注法制备微胶囊。通过测定包埋前后菌体的数量来测定所制得的微胶囊的包埋率。其中分别测定了以黄原胶、琼脂、壳聚糖等几种高分子材料为囊材制备得到的微胶囊的包埋率。分别对比了各组倾注法和锐孔法制备 得到微胶囊包埋率的区别。并以囊材浓度为横坐标,包埋率为纵坐标作图分析。

 

图1 黄原胶为囊材微胶囊包埋率

由图1可以得到,黄原胶浓度在0.1-1.5%之间时,随着囊材浓度的升高微胶囊的包埋率也随之提高。且锐孔法包埋率高于倾注法得到微胶囊的包埋率。

 

图2 琼脂为囊材微胶囊包埋率

    由图2得到琼脂浓度为40%时得到的包埋率较20%和30%高,且锐孔法的包埋率高于倾注法制备得到微胶囊的包埋率。

 

图3 明胶为囊材微胶囊包埋率

由图3可以得到锐孔法的包埋率高于倾注法,且在2.0-5.0%浓度之间随着浓度的提高包埋率随之提高。

 

图4 海藻酸钠为囊材微胶囊包埋率

    由图4得到以0.5-2.0%浓度海藻酸钠为囊材制备得到的微胶囊包埋率随着浓度的升高而升高,且锐孔法包埋率高于倾注法。

 

图5 壳聚糖为囊材微胶囊的包埋率

通过实验分析得到图5,由图5得到当壳聚糖浓度超过3.0%时,溶液粘度较高使用倾注法制备微胶囊时得到的微胶囊形状、粒径很不均一。当浓度超过4.0%时由于溶液粘度高而无法使用倾注法制备微胶囊。

通过图1-图5可以明显的看到,在实验使用的囊材浓度范围内,单凝聚法制备得到的微胶囊随着囊材浓度的升高其包埋率可以得到提高。而且锐孔法制备得到的微胶囊包埋率要高于倾注法制备得到的微胶囊。

实验也分析了复凝聚法制备得到微胶囊的包埋率,实验最终得到6组较好的实验结果。为别为:

1.壳聚糖2.0%+黄原胶0.5%;2.壳聚糖2.0%+海藻酸钠0.5%;3.黄原胶0.5%+海藻酸钠0.7%+明胶2.0%;4.海藻酸钠0.5%+明胶4.0%;5.黄原胶0.5%+海藻酸钠1.0%;6.壳聚糖2.5%+黄原胶0.3%。图6为相对应各组的包埋率。

 

图6 复凝聚法微胶囊的包埋率

由图6也可以看到锐孔法制备得到的微胶囊包埋率要高于倾注法,其中第2组(2.0%壳聚糖+0.5%海藻酸钠)和第6组(2.5%壳聚糖+0.3%黄原胶)包埋率最高,分别是76%和78%。

3.4 微胶囊粒径观察

倾注法制备得到的微胶囊在光学显微镜下随机测定微胶囊的粒径,并取20次测得粒径的平均值作为该微胶囊的粒径。

锐孔法制备得到的微胶囊使用直尺(精度1mm)来测定粒径,并取20次测定得到的平均值作为粒径。

3.4.1单凝聚法制得微胶囊粒径的测定

3.4.1.1 锐孔法微胶囊粒径分析

 

图7 壳聚糖为囊材锐孔法微胶囊粒径变化趋势

    由图7得到1.5%壳聚糖制备得到的微胶囊粒径在3.8-4.4mm之间波动;2.0%壳聚糖制备得到的微胶囊粒径在3.6-4.3mm之间波动;2.5%壳聚糖制备得到的微胶囊粒径在2.8-3.5mm之间波动。并且随着壳聚糖浓度的升高粒径有减小的趋势。

 

图8黄原胶为囊材锐孔法微胶囊粒径分析

    由图8得到浓度为0.3%和0.5%黄原胶制备得到的微胶囊粒径分别在1.9-2.6mm和1.6-2.3mm之间波动,而且随着浓度的升高粒径减小。

 

图9海藻酸钠为囊材锐孔法微胶囊粒径分析

    图9得到浓度为0.5%和1.0%的海藻酸钠制备得到的微胶囊粒径分别在2.1-3.0mm和1.8-2.6mm之间波动。同时随着浓度的升高粒径减小。

3.4.1.2 倾注法微胶囊粒径分析

 

图10壳聚糖为囊材倾注法微胶囊粒径分析

    图10得到1.5%和2.0%浓度壳聚糖制备得到的微胶囊粒径分别在17-25µm和13-17µm之间波动。

 

图11黄原胶为囊材倾注法微胶囊粒径分析

    由图11得到0.3%和0.5%浓度黄原胶制备得到的微胶囊粒径在15-25µm和9-21µm波动。0.5%黄原胶制备得到的微胶囊粒径波动范围较大。

 

图12海藻酸钠为囊材倾注法微胶囊粒径分析

    由图12得到0.5%和1.0%海藻酸钠制备得到的微胶囊粒径在6-9µm和8-18µm之间波动。而且1.0%海藻酸钠制备得到的微胶囊粒径较0.5%海藻酸钠的大,波动范围也较大。

 

图13明胶为囊材倾注法微胶囊粒径分析

与图10-12相比图13得到的以明胶为囊材得到的微胶囊粒径较大,浓度为3.0%和4.0%明胶制备得到的微胶囊粒径在30-48µm和29-41µm之间波动,且波动范围较大。

通过实验及分析,由图7-13得到囊材在一定浓度范围内随着浓度的升高粒径反而减小(除以倾注法制备得到的海藻酸钠微胶囊)。

3.4.2复凝聚法制得微胶囊粒径测定

表8 微胶囊粒径的观察

材料                                    浓度%

壳聚糖                 2.0                   2.5

黄原胶                 0.5       0.5         0.3

海藻酸钠                         1.0                   0.5

明胶                                                   4.0

锐孔法直径mm        3.0-4.4    1.5-2.3    3.1-4.2   1.3-2.5

倾注法直径µm        15-30       10-20      20-30

由图7-13和表8得到实验结果:锐孔法和倾注法相比,倾注法能够制备几微米到几十微米大小的微胶囊,而锐孔法制备得到的粒径较大。但是通过改变锐孔法的滴加装置,在装置内部施加高压等都可以制备粒径微小的微胶囊。

锐孔法制备得到的微胶囊比倾注法制备得到的微胶囊包埋率要高。其主要原因是锐孔法制备得到的微胶囊粒径较大,而倾注法制备得到的微胶囊粒径小。在相同质量的情况下倾注法制备得到的微胶囊表面积总和较大,菌体(芽孢)粘附囊材表面而未被包埋的数量就会增多,从而造成了倾注法制备得到的微胶囊包埋率较低。

3.5 微胶囊稳定性的分析

3.5.1微胶囊稳定性

将以壳聚糖、明胶、海藻酸钠、黄原胶等为囊材制备得到的微胶囊分别通过两种方法保存。并通过实验分析微胶囊的稳定性。

3.5.1.1 固化剂中保存

将制备得到的微胶囊保存在固化剂中(明胶微胶囊保存在水溶液中),每隔一周观察一次。实验发现以壳聚糖、海藻酸钠、黄原胶、琼脂为囊材制备得到的微胶囊在保存三个月之后外观、机械性能都没有明显的变化。而明胶为囊材制备的微胶囊其微胶囊表面以及固定剂中有大量的菌体生长,部分明胶已经被消耗,不适合长期保存。

3.5.1.2 干燥环境保存

将制备得到的微胶囊至于鼓风干燥箱中,30℃处理24小时,得到干燥的微胶囊,每周观察一次。

实验发现在30℃处理24小时后,微胶囊由于脱水粒径明显缩小,只有原来的50-70%左右。通过三个月的观察发现各种材料制得的微胶囊在机械性能、外观上面都没有明显的变化。

3.5.2微胶囊化枯草芽孢杆菌的稳定性

在实验过程中各种材料的性质、浓度、制备方法、制备条件都会影响微胶囊的制备。从微胶囊的制备方法,微胶囊的机械性能,微胶囊的稳定性等这几个方面综合考虑,分别选择:壳聚糖2.0%;壳聚糖2.5%;壳聚糖2.0%+黄原胶0.5%;这三组为囊材所制备得到的微胶囊来分析经过微胶囊化与没有经过微胶囊化的枯草芽孢杆菌(芽孢)的稳定性,见表9-1 1。(单位:107/g-1)

表9  壳聚糖2.0%,微胶囊化与未胶囊化稳定性的比较

条件\处理条件                                  60°C

                                         起始     3d      7d     10d      15d      20d

微胶囊化(锐孔法)活菌个数/107个/g-1     1.7      1.6      1.5     1.4      1.3     1.3

微胶囊化(倾注法)活菌个数/107个/g-1     1.3      1.3      1.1     1.0      1.0     1.0                    

未微胶囊化活菌个数/107个/g-1             47       7.8      6.4     6.0      5.9     4.7  

表10  壳聚糖2.5%,微胶囊化与未胶囊化稳定性的比较

条件\处理条件                                  60°C

                                         起始     3d      7d     10d      15d      20d

微胶囊化(锐孔)活菌个数/107个/g-1       2.4      2.3      2.0     2.0      1.8     1.8

微胶囊化(喷雾)活菌个数/107个/g-1       2.1      2.1      2.0     1.9      1.9     1.7                       

未微胶囊化活菌个数/107个/g-1             47       7.8      6.4     6.0      5.9     4.7   

表11  壳聚糖2.0%+黄原胶0.5%,微胶囊化与未胶囊化稳定性的比较

条件\处理条件                                        60°C

                                         起始     3d      7d     10d      15d      20d

微胶囊化(锐孔)活菌个数/107个/g-1       2.3      2.2     2.1     2.0      1.8      1.8

微胶囊化(喷雾)活菌个数/107个/g-1       1.9      1.8     1.7     1.7      1.7      1.6                       

未微胶囊化活菌个数/107个/g-1             47      7.8      6.4     6.0      5.9      4.4

通过表9-11可以发现经过微胶囊化得枯草芽孢杆菌在保存20天后活性仍然很高,存活率分别为76.5%、76.9%、75.0%、80.9%、78.3%、84.2%,平均存活率在75%以上。而未经微胶囊化得枯草芽孢杆菌在保存7天后只存活了13.6%,20天后存活率只有9.36%。

通过以上实验说明枯草芽孢杆菌经过微胶囊化处理后稳定性有了非常大的提高。

3.6 乳化剂的影响

在以壳聚糖、海藻酸钠、黄原胶为囊材制备微胶囊时,研究了乳化剂span 85对制备的影响。实验得到用锐孔法和倾注法制备微胶囊时,添加span 85后使溶液的粘度降低可制得较高浓度囊材的微胶囊。且制得的微胶囊粒径较小,形状较稳定。

3.7 微胶囊产品图片展示

    实验制备了大量的微胶囊,对其进行了机械性能、包埋率、微胶囊稳定性以及菌体稳定性等多因子的分析。

3.7.1锐孔法制备得到的微胶囊

    

图14  壳聚糖2.0% 微胶囊            图15 壳聚糖2.5%微胶囊

图14是利用2.0%壳聚糖为囊材制备得到的微胶囊,平均粒径为4.0mm,图15是利用2.5%壳聚糖为囊材制备得到的微胶囊,平均粒径为3.4mm。

由图15可以得到以2.5%壳聚糖为囊材制备得到的微胶囊粒径较一致,微胶囊的颜色较均一。而图14所示微胶囊粒径在3.6-4.3mm之间浮动,颜色不够均一。

   

    

图16  海藻酸钠0.5% 微胶囊         图17  黄原胶0.5%微胶囊

    图16、图17分别是以0.5%海藻酸钠和0.5%黄原胶为囊材制备得到的微胶囊。以0.5%黄原胶为囊材制备得到的微胶囊颜色均一,但是粒径不够均一。以0.5%海藻酸钠为囊材制备得到的微胶囊粒径均一性较好。

 

图18  2.0%壳聚糖+0.5%黄原胶微胶囊

    图18是以2.0%壳聚糖和0.5%黄原胶为囊材用复凝聚法制备得到的微胶囊。所得微胶囊颜色均一,粒径在3.0mm到4.4mm之间。

3.7.2倾注法制备得到的微胶囊

     

图19  4.0%明胶微胶囊                 图20 1.0%海藻酸钠微胶囊 

图19是以4.0%明胶为囊材制备得到的微胶囊。所制备得到的微胶囊机械能较差,颜色不均一,微胶囊的形状不规则。图20是以1.0%海藻酸钠为囊材制备得到的微胶囊,粒径在8-18µm之间。部分微胶囊颗粒聚集成团。

    

图21  1.5%壳聚糖                          图22  2.0%壳聚糖

图21、图22分别是以1.5%和2.0%壳聚糖为囊材制备得到的微胶囊。其中2.0%壳聚糖为囊材制备得到的微胶囊颜色较均一。以1.5%壳聚糖为囊材制备得到的微胶囊大部分聚集成团。

 

图23  0.3%黄原胶微胶囊

    图23是以0.3%黄原胶为囊材制备得到的微胶囊,所得微胶囊颜色均一且都都单个存在。

注:图20- 23皆为光学显微镜放大400倍条件下拍摄,其他为常规拍摄。

4 总结与展望

本文研究了采用锐孔法和倾注法制备微胶囊——枯草芽孢杆菌微胶囊。分别利用明胶、壳聚糖、海藻酸钠、黄原胶、琼脂等制备单凝聚以及复凝聚微胶囊。并从微胶囊的制备方法、包埋率、机械性能、微胶囊稳定性以及菌体稳定性等几个方面进行了研究分析。并优化促芽孢培养基,促进枯草芽孢杆菌产芽孢,利用抗逆性能更好的芽孢最为微胶囊的芯材,以提高微胶囊的菌体稳定性。通过实验分析得到以下结论:

1、通过枯草芽孢杆菌在几种培养基中的生长情况,以及利用孔雀石绿对枯草芽孢杆菌进行芽孢染色观察得到培养基:牛肉膏12g;氯化钠5g;水1000ml;MnSO4 0.5g;pH7.0-7.2,既能够使枯草芽孢杆菌迅速生长又能促进枯草芽孢杆菌产芽孢。在12小时就有75%的菌体产了芽孢。

2、分别利用枯草芽孢杆菌菌体和芽孢作为微胶囊的芯材来制备微胶囊,实验得到选择枯草芽孢杆菌芽孢作为制备微胶囊的芯材有利于提高微胶囊中菌体的稳定性,延长保存时间。

3、实验分别利用了锐孔法和倾注法制备枯草芽孢杆菌微胶囊,在现有的条件以及技术情况下,利用锐孔法制备得到的微胶囊粒径较大(1.5-5.0mm)而利用倾注法制备得到的微胶囊的粒径在3.0-45µm之间。在包埋率上面锐孔法制备得到的微胶囊比倾注法制备得到的微胶囊包埋率要高。

4、通过实验分析微胶囊的机械性能、包埋率、稳定性以及菌体稳定性等性能,得到:2.0%壳聚糖2.5%壳聚糖2.0%壳聚糖+0.5%黄原胶,这三组的综合性能最佳。

5、实验分析经过微胶囊化的枯草芽孢杆菌(芽孢)和未经微胶囊化的枯草芽孢杆菌的稳定性,得到经过微胶囊化的菌体在保存20天后菌体平均存活率在75%以上,而未经微胶囊化的菌体在相同条件下保存20天后存活率只有9.36%

目前实验室制备微胶囊主要材料为壳聚糖,但是壳聚糖价格昂贵。为了未来的大规模生产工业化生产,使用价廉易得的囊材如明胶、琼脂等来制备微胶囊将是今后主要探讨的。而因为利用两种或者两种以上的囊材使用复凝聚法制备微胶囊将能很大程度上提高微胶囊的机械性能以及菌体稳定性,也是下一步重点研究方向[32]。

目前流化床发、多孔分离法 都是工业化制备高性能微胶囊的方法[33]。随着生物材料和化工等技术的发展,以及微胶囊独特的性能和优点,微胶囊技术将会逐渐步入人们的日常生活。

同时,我们注意到,微胶囊在不同条件下的稳定性也是影响其性能与应用的重要因素,提高微胶囊的普适性,是扩大其应用范围的关键因素之一。在提高微胶囊的普适性的同时,我们也注意到,微胶囊以其独特的性质能适应一些特殊的环境,所以开发针对特殊环境的专用微胶囊应该也是今后工作重点之 一。

致谢

在浙江科技学院的四年马上就要划上一个句号。在这里感谢浙江科技学院的每一位教职工为学校建设的付出,以至于向我们提供了那么一个良好的学习、实践的平台。

本论文是在我的导师——徐晖老师的悉心指导下完成的,徐晖老师在我毕业设计的过程中多次亲临指导,并且也多次组织同学交流汇报自己的课题,让大家互相交流、互相学习。同时魏婄莲老师也对我实验过程中存在的问题进行了多次的指导,在此一并表示感谢。同时非常感谢浙江科技学院生化学院微生物实验室为我提供了良好的实验环境,感谢生化学院的老师对我的悉心指导。也非常感谢在微生物实验室里面的每一位同学,你们无论在生活还是学习上,都会向我伸出温软的热情之手,实验的结果也离不开他们的帮助和配合。

在这里还要感谢丁香园论坛、小木虫论坛中各位资深会员在我课题设计过程中,在论文写作中给我的意见以及建议。在我毕业设计的过程中你们的意见和建议给我带来很很大的帮助。

同样没有任何语言能够表达我对父母的感激之情,感谢你们对我倾注的无私的爱。祝你们健健康康。

参考文献

[1] 李琳琳,陈东,丁明慧,等.磁性微胶囊的制备及其药物缓控释性能[J].物理化学学报,2007,23(12) :1969-1973

[2] 冯莉萍,虞庞勇.微囊技术的最新进展[J].水产养殖,2002,20(2):19-20

[3] 朱丽云,孙培龙,张立钦.微生物农药微胶囊技术及其应用前景[J].浙江林学院学报,2002,19(l):101-112

[4] 宋键,陈磊,李效军.微胶囊化技术及应用[M].北京:化学工业出版社,2001.9:23-47

[5] 李宁.双歧杆菌微胶囊制备工艺及功能特性的研究[D].河北:河北农业大学发酵工程系,2007.6

[6] 夏宇正,陈晓.精细高分子化工及应用[M].北京:化学工业出版社,2000.3:76-98

[7] 梁涛,刘维锦,杨梅,等.一种可逆热致变色微胶囊的制备及在印花中的应用[J].化纤与纺织技术,2008,6(2):1-4

[8] Yang Ru-de,Zhang Li-jun,Chen Hui-yin,Guo Yong.Preparation Condition of Associated Bifidobacterium Microcapsules.Journal of South China Universi-ty of Technology,2001,29(10):

6-9

[9] 刘晓庚,谢亚桐.微胶囊制备方法的比较[J].粮食与食品工业,2005,1(12):28-31

[10] 苏峻峰,任丽,王立新.微胶囊技术及其最新研究进展[J].材料导报,2000, (17):141-144

[11] 段武海.PEG相变微胶囊的制备及性状分析[D].上海:东华大学纺织材料与纺织品设计系,2007.3

[12] 胡云峰.避蚊胺微胶囊的制备研究[D].大连:大连理工大学化学工程系,2008.6

[13] 田云,卢向阳,何小解等.微胶囊制备技术及其应用研究[J].科学技术与工程,2005,1(5):44-47

[14] 吴克刚.益生菌的生理功能及微胶囊化的必要性和方法[J].广州食品工业科技,2004,(20):69-72

[15] 唐宝英,朱晓慧,刘佳.双歧杆菌干燥型微胶囊技术的研究[J].食品与发酵工业,2003,29(10):93-95

[16] 魏华,李雁群,傅金衡等.乳酸菌微囊化工艺的初步研究[J].中国微生态学杂志,2000,12(5):259-261

[17] 魏华,李雁群,付金衡等.乳酸菌微胶囊化的初步研究[J].中国乳品工业,1998,26(6):13-16

[18] 袁青梅,杨红卫,张发广等.生物农药微胶囊制备研究[J].云南大学学报,2005,27(l):57-59

[19] 陈健凯,翁文.双层包埋剂包埋乳酸菌[J].漳州职业技术学院学报,2005,7(3):5-8

[20] 周小辉,戴晋军,王绍辉,等. 枯草芽孢杆菌制剂作用机理及应用效果浅析[J].饲料与畜牧,2008,(05):61-62

[21] 杜冰,杨公明,刘长海,等.枯草芽孢杆菌的生理和培养特性研究[J].广东饲料,2008,17(4):133-140

[22] 李宁.双歧杆菌微胶囊制备工艺及功能特性的研究[D].河北:河北农业大学发酵工程系,2007.6

[23] 夏宇正,陈晓.精细高分子化工及应用[M].北京:化学工业出版社,2000.3:76-98

[24] 徐晖,魏培莲.枯草芽胞杆菌微生态制剂的研制[J].氨基酸和生物资源,2008,30(2):56-58

[25] 许时婴,张晓鸣,等.微胶囊技术原理与应用[M].北京:化学工业出版社,2006,5:52-58

[26] 马良进,朱丽云.Bt微胶囊制备技术探讨[J].浙江农业科学,2006, (6):705-707

[27] 孙爱兰,谭天伟,周荣琪,等.壳聚糖香精微胶囊的制备[J].食品与发酵工业,2005,31(3):60-63

[28] 陈河如,邹湘辉,马民智.头孢唑啉钠-海藻酸钠微胶囊的制备及抗菌作用[J].应用化学,2007,24(12):1354-1356

[29] 唐文,吴颖.黄原胶在微胶囊壁材中的作用[J].微胶囊技术,1998, (1):33-34

[30] 王岸娜,吴立根,周跃勇.壳聚糖海藻酸钠微胶囊制备研究[J].河南工业大学学报(自然科学版)[J],2007,28(6):19-24

[31] 李琳琳,陈东,丁明慧,等.磁性微胶囊的制备及其药物缓控释性能[J].物理化学学报,2007,23(12):1969-1973

篇10

Abstract In recent years fundamental physics in a microgravity environment has attracted much attention from theoreticians in the international community, and has been given the name of fundamental physics in space. Furthermore, microgravity science has gradually become known as physics in space amongst the space agencies of the chief space countries. However, physics in space has not changed the contents of microgravity science. As the International Space Station nears completion, its member countries are working hard to schedule the microgravity science missions, and important results should be obtained before 2016. On the other hand, plans for space tests on the theories of gravity and general relativity on board special satellites are under way. After the GP-B satellite experiment by NASA, the LISA program for space measurement of gravitational waves aroused broad interest. Physics in space will certainly make great strides in both promoting important scientific achievements and in developing high technology for applications.

Keywords microgravity science, fundamental physics, fluid physics, combustion, materials sciences, biotechnology

1 引言

当一个空间飞行器环绕地球以第一宇宙速度自主飞行时,我们可以选择一个(局部)惯性参考系,其原点位于空间飞行器的质心位置.如果不考虑大气阻力、光辐射压力、质心偏离引起的各种扰动力,则空间飞行器中物体受到的地球引力与运动离心力抵消,物体处于“失重”状态,或者说物体处于微重力水平中.所谓“微重力”是指该处的有效重力水平为地球表面重力水平的10-6.在实际的绕地球飞行器中,有效重力水平与频率相关,低频时达到10-3,高频时优于10-6.除了地面的落塔、抛物线飞行的失重飞机和可达十几分钟的微重力火箭外,用于微重力实验的空间飞行器有返回式卫星和不返回卫星、载人飞船、航天飞机和空间站.各种载人空间飞行器不可避免人的干扰,飞行器中的有效重力很难达到微重力水平;而验证引力理论的高分辨率空间实验需要非常低的飞 (femto,亳微微)重力至阿(atto,微微微)重力环境,一般需要发射专门的基础物理卫星.

随着载人空间活动的发展,人们需要进一步认识微重力环境中的物质运动规律,从而发展了微小重力这种极端环境下的学术领域——微重力科学.在微重力环境中,地球重力的影响极大地减弱,控制地面过程的浮力对流、沉淀和分层以及由重力引起的静压梯度都极大地降低,表面张力和润湿等作用变得突出.从上世纪七八十年代以来,微重力科学主要研究微重力流体物理、微重力燃烧、空间材料科学和空间生物技术.近十余年来,微重力条件提供的高精度物理环境吸引了一批理论物理学家,他们希望利用空间的微重力环境能更好地检验广义相对论和引力理论以及低温原子物理和低温凝聚态物理的许多基础物理前沿问题.这样就形成了微重力科学的一个新领域——空间基础物理.近来,人们常常把这些微重力科学的领域统称为空间的物理学,它是利用微重力环境来研究物理学规律,以区别于在地面重力环境中的物理学.要指出的是,中文的 “空间的物理学”和 “空间物理”是两个不同的概念,后者主要研究太阳系等离子体的运动规律和行星科学,而不涉及基础物理的前沿问题.

2 空间基础物理

2.1 广义相对论验证和引力理论[1]

引力质量mg和惯性质量mi相等的(弱)等效原理是广义相对论爱因斯坦强等效原理假设的基础[12].有文献记载的弱等效原理验证始于牛顿的摆实验,Eotvos的扭称实验更为精确;现代的月-地激光测距实验则检验了强等效原理[12].到目前为止[12],弱等效原理的实验精度η=2∣mg-mi∣/(mg+mi)已达10-13,在地基实验中已再难提高.现在的一些引力理论认为,将测量精度提高到10-15以上有可能揭示广义相对论的问题,具有很大的学术价值,这只能在空间微重力条件下才能实现[2].国际上蕴酿多年的“等效原理的卫星检验”(STEP)计划,试图将弱等效原理的实验精度提高到10-18.STEP计划一直没有获得美国的立项经费支持,现在的立项经费就更加困难了.目前欧洲一些国家正在争取安排Mini STEP计划,其实验精度为10-15;法国的小型卫星(MicroScope)计划于2010年发射,拟在10-15精度上检验弱等效原理[13].引力探测-乙(Gravity Probe-B, GP-B)计划是美国空间局主持的计划,由美国斯坦福大学GP-B小组负责.该计划的主要任务是验证广义相对论的空间弯曲和拖曳效应,即验证时间和空间因地球大质量物体存在而弯曲(测地效应),和大质量物体的旋转拖动周围时空结构发生扭曲(惯性系拖曳效应).用4个旋转球体作为陀螺仪,地球引力拖曳会影响球体的转轴.用飞马星座中的一颗恒星校准陀螺自旋轴的方向,用望远镜测量“测地效应”.通过球体转轴进动0.000011度,探测“惯性系拖曳效应”.GP-B卫星于2004年4月发射,2005年9月终止数据采集.原预计2006年夏公布结果,但是,由于电场等因素影响了球体的方位,仍需对其他影响进行研究.现正在加紧分析真正有效的时空信号数据,并尽快宣布观测结论.初步结果显示,较显著的‘测地效应’从数据中完全可见,正在完全证实广义相对论的道路上前进;刚刚看到 “惯性系拖曳效应”的端倪.实验结果似乎验证了广义相对论的理论,人们正在期待着最后宣布的科学结果[3].

引力波是广义相对论理论预言的现象,40年前声称在地面测量到高频引力波,激起引力探测的热潮.低频引力波只能在空间探测.欧洲空间局和美国空间局联合推进空间探测引力波的“激光干涉全球天线”(LISA)计划,它的探测源是108太阳质量的黑洞,相应的频率是10-3—10-1Hz.LISA计划由相距500万公里等边近三角形的三颗卫星组成,每颗卫星分别有2个悬浮的试验质量,位于激光器平台的前端.引力波传到卫星环境中,将引起试验质量微小的位移,通过激光干涉方法测量小于纳米量级的位移,推演出引力波的存在.为了验证LISA计划的关键技术,将于2010年发射LISA Pathfinder卫星,而LISA计划预计在2019年以后发射.引力波探测的成功不仅可以验证广义相对论理论的预言,还将开辟引力波天文学,具有极大的重要性.欧洲空间局将LISA计划列为中、远期的首选项目,美国空间局“超越爱因斯坦”计划两大卫星之一的“大爆炸观测台”卫星也是探讨测量中频(0.1—1.0Hz)引力波.空间引力波探测的学术重要性由此可见一斑.

我国空间科学的发展需要研讨引力理论,研究卫星实验的方案,大家正在集思广益.中国科学院理论物理研究所张元仲及其他专家联合提出TEPO计划,建议在10-16精度内验证弱等效原理和在10-14精度内验证新型的二维等效原理;华中科技大学罗俊等人提出TISS计划,希望利用高精度空间静电悬浮加速度计将检验牛顿引力的反比定律精度提高3个数量级.中国科学院紫金山天文台倪维斗的计划是希望探测低频(5×10-6 — 5×10-3Hz)引力波;中国科学院应用数学研究所刘润球则关注空间的中频(10-2 — 100Hz)引力波探测.这些方案都还在蕴酿过程中.

2.2 空间冷原子物理和原子钟研究

激光冷却和玻色-爱因斯坦凝聚(BEC)曾分别于1997年和2001年获得诺贝尔物理学奖,它们是当代物理学最活跃的前沿领域之一.BEC有时也称为物质的第五态,它是1925年爱因斯坦预言的物质状态,即当气体温度低于其极限温度时,所有冷原子都聚集在最低量子能态上,表现出玻色子的特证.作为一种新的物质状态,它包含着许多新的基本物理规律,等待人们去探索,诸如物质波及其相干性、低温极限(10-15 K)、量子相变等.另一方面,它蕴育着许多重大的应用前景,诸如原子激光、高精度时标等.微重力环境可以更好地降低气体的温度,改进谱线的宽度和稳定性,提高系统的信噪比,从而为研究提供更好的条件.欧洲空间局的空间BEC研究也正在安排当中.

作为该领域的一个重要应用项目,空间冷气体原子钟的研制受到重视.地面通过激光冷却和冷原子喷泉效应,可以使冷气体原子钟的精度达到10-16.而在微重力环境中,则可以使冷气体原子钟的精度提高一个数量级,从而在军事和民用上产生极大的价值.欧洲空间局和美国国家航空和空间署都将空间冷原子钟研究作为国际空间站的重要研究项目.

中国科学院上海光学精密机械研究所王育竹在地基的BEC研究中取得很好的成果[4],正在准备研制空间的超高精度冷原子微波钟,精度可达10-17;华东师范大学马龙生提出进行空间高精度光钟研究的建议,精度可达10-18.

2.3 低温凝聚态物理

凝聚态物质在极低温条件下会表现出许多特异的性质,成为物理学的新热点.微重力条件可以实现极小的静压梯度,可以提供更高精度的物理学实验条件,从而在更高精度下验证理论和揭示新的规律.美国喷气推进实验室在航天飞机上完成了液氦在临界温度附近(纳度的精度内)的比热奇异性实验,初步验证了二阶相变的重整化群理论[1].科学家们提出了一批空间实验课题,诸如超流氦相变动力学,连续相变的普适性,气-液临界点的尺度规律,约束于不同几何形状和尺度的液氦性质,相图特殊点附近氦混合物的性质,约束和边界效应,非平衡相变,分形结构和图样形式,临界现象,超流体的流体动力学,量子固体等.这些课题大都需要超低温条件,因而需要空间大型制冷设备,耗资巨大.美国已暂停这方面的研究,中国在短期内还难于安排相关的空间实验条件.

3 微重力流体物理

微重力流体物理是微重力科学的重要领域,它是微重力应用和工程的基础,人类空间探索过程中的许多难题的解决需要借助于流体物理的研究.在基础研究方面,微重力环境为研究新力学体系内的运动规律提供了极好的条件,诸如非浮力的自然对流,多尺度的耦合过程,表面力驱动的流动,失重条件下的多相流和沸腾传热,以及复杂流体力学等.可以引入静Bond数Bo=ρgl2/σ或动Bond数Bd=ρg l2 /(∣σ′T∣ ΔT)来分析重力作用和表向张力作用的相对重要性,其中 ρ,σ, g, l 分别是流体密度、界面的表面张力、有效重力加速度和特证尺度,∣σ′T∣和ΔT分别是表面张力梯度和特征温差.Bond数小于1时,表面张力的作用会大于重力的作用,这要求小的尺度、或小的重力加速度、或小的密度差,对应于小尺度过程、微重力过程、或中性悬浮过程[5].

3.1 简单流体的对流和传热

具有界面的流体体系普遍存在于自然科学和工程应用中.研究热毛细对流的规律,对于空间材料加工、生物技术、燃烧等过程中热毛细对流控制都有重要意义,并对地面电子装置的热控制,食品加工过程,化学工程微电子机械系统(MEMS),薄膜等小尺度的流动问题也有指导作用.微重力环境中流体的晃动、流体的运动与固体结构的相互耦合是航天工程中经常遇到的问题.对微重力环境中简单流体的传热和传质过程,人们主要研究毛细系统中临界现象和浸润现象,热毛细对流的转捩过程和振荡机理,液滴热毛细迁移及相互作用规律等方面.流体管理研究也是微重力工程中的重要课题.

3.2 多相流的传质和传热

微重力气/液两相流动与传热研究的主要对象包括两相流动的流型、沸腾与冷凝传热、混合与分离等现象,对我国载人航天技术(如航天器热与流体管理系统、空间站与深空探测器等大型航天器动力系统、载人航天器环控生保系统以及空间材料制备与空间生物技术实验等)的发展有直接的应用价值.在微重力环境中,重力作用被极大地抑制甚至完全消除,更能凸显气、液、固相间的传递机制,便于更深刻地揭示其流动与传热机理.借助于微重力气液两相流动与传热的深入研究,对我国实现能源战略需求和地面常重力环境中的石油、化工、制造等相关技术开发与应用也有重要指导意义.3.3 复杂流体

复杂流体是一种分散体系,它指的是具有一种或几种分散相的物质体系,也有人称之为软物质.在重力条件下,复杂流体的许多行为特征会受对流、沉降、分层等干扰,而微重力条件则有助于研究在地面上被重力作用所掩盖的过程,特别是分子间的相互作用力.微重力复杂流体研究包括:胶体的聚集和相变研究;悬浮液和乳状液的稳定性研究;复杂等离子体的结晶研究;气溶胶的稳定性和聚集行为研究;对颗粒体系本征运动行为的研究;临界点现象的研究;以及材料制备、石油开采和生物流体的相关问题研究.随着人类深空探测活动的展开,对不同重力场中分散体系物质的操作与输运的要求,以及对其运动规律认知的需求十分迫切.空间科学实验不仅能够使我们获得新的科学知识,而且其科学成果对于地面材料及器件制备工艺的创新具有重要指导意义.对复杂流动现象的研究在材料设计中起到了切实的作用,如对复杂流体自组织现象的研究成果已经应用于纳米结构材料和器件的研制.近年来,复杂流体(软物质)的力学和物理学,接触角、接触线和浸润现象等与物理化学密切相关的领域也越来越受到关注[6].

3.4 近期的空间实验

随着国际空间站的逐步安装,国外微重力空间实验的项目将逐步进行.目前己经纳入计划中的项目有:

毛细流动:不同形状、介质、浸润性、流体管理;

热毛细对流;

流体的梯度涨落;

Soret 系数测量;

近临界和超临界流体;

蒸发和冷凝过程:流体的热管理;

沸腾传热;

颗粒材料行为;

胶体和乳剂聚集和稳定性;

泡沫稳定性.

“十一·五”期间,国家安排了进行空间微重力科学和空间生命科学研究的“实践-10”卫星,将完成10项微重力科学的空间实验.这些实验包括空间热毛细对流、具有蒸发界面的对流、颗粒材料物理、沸腾传热、复杂流体的结晶等流体物理空间实验项目.同对,在载人航天工程第二阶段中,还要安排半浮区液桥、多液滴相互作用、复杂流体稳定性、多相流传热等空间实验项目.我国的微重力流体物理已有较好基础,将会做出较大贡献.

微重力流体物理所涉及的许多过程与微尺度流动中的过程有许多相似性,引起人们的兴趣.以中国科学院力学研究所国家微重力实验室为主的流体物理研究有不少建树,获得国际同行的好评.

4 燃烧科学

燃烧是一门古老的学科,而地面的燃烧过程都是和浮力对流密切耦合在一起的,给模型化研究增加了难度.微重力条件下基本上没有浮力对流的影响,为研究燃烧的化学反应过程提供了极好的机遇.1957年,东京大学Kumagai教授的0.5s落塔实验研究了乙醇棉球的微重力燃烧过程,开创了微重力燃烧的实验研究和利用落塔进行微重力实验的时代.落塔设施己成为进行微重力燃烧实验的有力工具.

微重力燃烧涉及了地面燃烧学的主要领域,美国国家航空和空间署将微重力燃烧作为重要的研究方向,欧洲和日本空间局也十分重视.几乎地面主要的燃烧过程都进行了空间微重力实验,诸如预混气体燃烧、气体扩散燃烧、液滴燃烧、颗粒和粉尘燃烧等,并研究了典型气体环境中燃料表面的点火和传播,流动过程与燃烧的耦合等,发现了一些新现象,例如燃烧的分散球状分布等.在许多微重力燃烧过程中,除了通常的吹熄极限,还有辐射损失引起的冷熄极限,这只能在微重力环境中才能观测到.微重力燃烧的研究除了具有重大的机理意义以外,还在于:利用对燃烧过程的深刻理解,改进地面燃烧过程的效益;利用对燃烧产物的进一步分析,改进地面燃烧产物污染环境.中国的能源将在较长时间内以煤作为主要燃料,应加强微重力煤燃烧的研究[7].

载人飞行器的安全防火是微重力燃烧的重大课题,自从阿波罗1号飞船在地面着火,烧死3名宇航员后,美国国家航空和空间署就把防火安全作为载人航天的首要问题.特别是今后的长期载人飞行任务,使防火任务更加严重.需要研究典型气体氛围下沿固体表面的着火条件、火焰传播过程和熄火条件;还要研究闷烧的各种条件.除进行相应的模拟研究外,还要进行大量的落塔实验,对逐个上天的非金属材料和某些金属材料进行典型气体环境下的燃烧实验.同时,还需要制订载人飞行器的防火规范.美国和俄罗斯各自建立了他们的载人航天材料筛选和防火规范,但载人航天器中的着火事件仍有发生.因为载人航天器内存在着火的条件,问题不可能完全解决.特别是在载人探索火星等长时间飞行任务中,防火规范还是一个需要进一步探讨和研究的课题[8].

中国科学院工程热物理研究所和力学研究所进行了一些微重力燃烧的研究工作.近年来,清华大学和华中科技大学等煤燃烧重点实验室开始关注微重力的煤燃烧研究.在“十一·五”期间,非金属材科燃烧、导线的烧燃、煤的燃烧等项目己列入空间实验计划,应能取得好的结果.

5 材料科学

空间材料科学曾是微重力科学中耗资最大的领域,材料科学各分支领域的学者都希望在空间微重力环境中去研究凝固过程的机理和制备高质量的材科.空间微重力环境是制备、研究多元均匀块体材料的最佳场所,其主要特征就是消除了因重力而产生的沉降、浮力对流和静压力梯度.由于浮力减弱,密度分层效应的消失,可以使不同密度的介质均匀地混合.由于空间微重力环境中静压力梯度几乎趋于零,因而能提供更加均匀的热力学状态.这种条件更有利于研究物质的热力学本质和流体力学本质,探索、研制新型的材料和发现材料的新功能.目前空间材料科学研究的重点是利用空间实验的成果改进地面材料制备技术,以及利用空间微重力环境测量高温熔体的输运系数.在国际空间站的欧洲、美国和日本压力舱中,都有材料研究的专柜.

利用微重力环境进行材料科学研究,不仅可以发展材料科学理论,还可以发展新型材料和新型加工工艺.微重力环境可以制备出一些比地面更好的高品质材料,空间材料科学的进展及空间材料制备的技术可以改进空间和地面的材料加工,特别是为地面的晶体生长和铸造技术提供帮助.空间材料科学涉及的领域有金属材料、半导体材料、光学晶体材料、纳米材料和高分子与生物医学材料等[9].

我国空间材料科学目前面临相当大的困难.克服这些困难,目前一方面可充分利用国际合作(俄罗斯、日本),另一方面,我们需要面对现实,以地基实验为主,在加强国际合作的同时,扩大该领域的研究团队,同时该学科需要进一步凝炼学科方向和科学问题,今后应该创造条件开展空间材料科学研究.我国空间材料科学在林兰英先生的倡导和指导下,一批学者积极参与,取得了重要学术成果.“十一·五”期间,我国的SJ-10卫星计划和载人航天工程(第二阶段)计划中都分别安排了多功位材料实验炉的空间实验,应能做出一批较好结果.

6 生物技术

空间生物技术促进了生物技术的定量化和模型化研究,促进了新的实验方法和仪器设备的发展,具有重要学科意义.另一方面,空间生物技术有很强的应用背景,可以改善人类的健康和发展生物产业,是空间商业计划的新方向.目前,空间生物技术的主要研究方向是蛋白质单晶生长和细胞/组织的三维培养.

晶体衍射法仍然是当今研究生物大分子结构和功能的主要方法,获得高质量的大尺寸蛋白质单晶就是一项艰难的任务.溶液法生长蛋白质晶体受到许多因素的影响,微重力环境可以更有效地提供扩散为主的输运环境以及实现失重条件下的无容器过程和较好的界面控制,使空间的蛋白质单晶生长显示出许多优点.各国空间局都安排了大量的空间蛋白质单晶生长实验,而且取得很大进展.但并不是所有空间实验都取得好结果,也有不少不成功的实验.机理研究表明,蛋白质晶体生长过程取决于溶质的输运过程和非线性的界面动力学过程;对于不同的生长条件,可以从实验和理论上具体分析这两个过程的作用.由于蛋白质晶体生长过程的复杂性,重力因素只是生长过程中诸多因素之一,机理研究还有待进一步完善.国际上有人认为液/液体系较好,也有人认为液/气体系较好.大家都在争取更多的空间实验,以取得更多的积累.空间蛋白质单晶生长己成为有重要应用前景的商业计划项目[10].在微重力环境中实现了三维的细胞/组织培养,开创了一片新天地.地球表面的重力作用,使细胞培养器中的附壁效应十分显著,一般都需要外加旋转效应.旋转效应引起的剪切力作用于被培养的细胞,将改变其性能,使被培养细胞或组织的性能发生较大变化.人们在地面利用三维旋转器来模拟某些微重力效应的同时,还进行了大量空间细胞/组织培养的实验,包括从细菌到哺乳动植物广泛类群的细胞.空间的生物反应器实验的结果表明,失重条件下的三维细胞培养极大地改善了地面细胞的培养条件,并己获得了一些很好的成果.随着空间生物反应器实验工作的进展,空间细胞/组识培养己经显示出重要的商业应用前景[11].

中国科学院生物物理研究所是我国从事空间蛋白质单晶生长研究的主要单位,动物研究所和力学研究所在细胞三维培养方面做了许多研究工作.

目前,国际空间活动正在调整探索方向,微重力研究遇到经费紧缺的困难.今后十余年的基础物理大型探测集中于LISA计划,一些中、小型计划正在考虑之中.国际空间站将于2010年完全建成,欧洲空间局的哥伦布舱和日本的希望舱段己分别与国际空间站主体对接.今后十年将是国际空间站出成果的时期,预计会完成一大批空间微重力实验.我国空间科学规划将微重力科学列为持续发展领域;我国载人航天工程第二步将建空间实验室,第三步将建空间站.今后15年将是我国微重力科学发展的好时期,我们要抓紧机遇,安排好计划,努力做出好成绩.

参考文献

[1] 倪维斗.相对论性引力理论的实验基础及测试.见科学前沿与未来(第10集),香山科学会议主编.北京:中国环境科学出版社,2006.第159页

[2] 李杰信.追寻兰色星球.北京:航空工业出版社,2000

[3] Everitt F F, Parkinson B. Gravity Probe B——Post Flight Analysis. Final Report, NASA, Oct. 2006

[4] 王育竹,王笑鹃. 物理,1993,22:16[Wang Y Z, Wang X J. Wuli(Physics), 1993,22:16(in Chinese)]

[5] 胡文瑞,徐硕昌. 微重力流体力学. 北京: 科学出版社,1999

[6] 孙祉伟. 力学进展,1998,28:93[San Z W. Advances in Mechanics, 1998,28:93(in Chinese)]

[7] 张夏.力学进展,2004,34:507[Zhang X. Advances in Mechanics, 2004, 34:507(in Chinese)]

[8] 张夏.力学进展,2005,35:100[Zhang X. Advances in Mechanics,2005,35:100(in Chinese)]

[9] Regel L L. Materials Processing in Space, New York & London, Consultants Bureau, 1990

[10] 毕汝昌.空间科学学报,1999,19(增刊):9[Bi R C. Chin. J. Space Sci., 1999,19(supplement):9(in Chinese)]

友情链接