发布时间:2023-10-08 10:04:46
导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的13篇化学工程研究方向范例,将为您的写作提供有力的支持和灵感!
关键词:化学交换饱和转移;磁共振成像;量化 CEST;数学模型
1 化学交换饱和转移磁共振成像(Chemi- calExchangeSaturationTransfer,CEST- MRI)量化的意义
CEST-MRI成像是目前备受关注的一种分子影像技术,其使用特定频率的饱和脉冲来标记待检测的溶质分子,该分子上可交换质子与水发生多次化学交换引起水信号的降低从而被检测[1].尽管生物组织中这些小溶质池的浓度通常仅在毫摩尔浓度范围内,只要选择合适的实验参数,可交换质子与水的化学交换的累积效应就能实现信号放大, 因此 CEST- MRI具有较高的灵敏度(与传统的MRI相比,可达到102~106)[2].自从 Ward和 Bal-aba 等人 2000 年提出 CEST - MRI 的 概 念 以来[1],由于其具有可灵敏检测特定(类型)分子的独特优势,且对温度和 pH 值[3]等微环境的变化敏感,被认为有临床转换潜能的可包含生化信息的对比机制,迅速引起广泛的兴趣[4].与正常组织相比,肿瘤本身显示共振频率距离水~3.5 的高信号,被认为主要是来自多肽和蛋白质的酰胺质子,称之为酰胺质子转移 (amideprotontransfer,APT)成像[5-6].CEST- MRI 技术也可检测蛋白质和多 肽[7-8]、肌酸[9]、葡萄糖[10]、谷氨酸[11]、糖原[12]和糖胺聚糖[13]等,有潜力在临床中用于各种疾病和代谢性紊乱,包括:乳腺癌[14-15]、前列腺癌[16]和中风[17]等的检测.该领域已经从最初简单的 CEST加权图像转变为更量化的 CEST-MRI分析.为了进一步揭示与疾病相关的病理生理特征,并对同一 组织不同时间点进行监测,需要更加精准的量化. 因此,笔者简要地概述 CEST- MRI的不同方法和最新进展,供对该领域有兴趣的人员参考.
CEST-MRI的基本原理是通过水信号的减少来间接实现对特定分子的检测.然而,对于活体CEST-MRI成像,水信号的降低不光来自 CEST效应,还来自直接水饱和度(directwatersatura- tion,DS),半 固体磁化转移效应 (magnetization transfercontrast,MTC)和 核奥氏效应 (nuclear overhauserenhancement,NOE)等 竞争效应[18].同时,由于这些竞争效应受到静磁场 B0、饱和功率(saturationpower,B 1-sat)和其他实验参数的 影响,致使 CEST- MRI成为一个复杂的技术.如 何从水信号中提取出 CEST 效应,尽量减弱饱和脉冲对其他效应的影响,实现对特定分子的精确量化,进 而更加准确地 对疾病进行诊 断,一 直 是CEST-MRI研究的热点.为了证明特定的 CEST效应,通常通过获取大量的水信号强度作为射频(RF)饱和频率偏移的函数来产生Z 谱.Z 谱是通过施加脉冲后水信号的强度Ssat 与施加脉冲前水信号的强度S0 的比值得到 .理论上,Z 谱中显示的CEST 增强取决于池的大小、交换率和可交换质子的弛豫时间.这个简单的概念与其他相互竞争的影响导致对 CEST 量化变得复杂.因此,笔者拟定从量化的角度对 CEST-MRI作一个回顾.
2 CEST-MRI理论模型
CEST- MRI 成 像 机 制 复 杂,不 仅 取 决 于CEST-MRI试剂的浓度、交换和弛豫性质,而且随B0 和B 1-sat等实验条件的变化而变化.因此,对于研究这些最优条件,数值模拟是有用和有效的. CEST 效应的量化是一个复杂的过程,除了与质子浓度和交换率有关之外,还受到如 RF 辐射强度、持续时间、化学位移、主磁场强度以及纯水的横向、纵向弛豫时间等因素的影响[20].为了更精确地描述 CEST 成像机制,通常使用包含可交换质子池的布洛赫方程(Bloch- McConnellequation).2004年Zhou等人将包含可交换质子池的最简化的 2池模型的Bloch方程引入到 CEST-MRI中,并推导出解析解[21].常见的Bloch方程描述的模型包括 2池模型[20](水池和可交换质子池)和3 池模式[22](水池、可交换质子池和大分子固体池).下面以2池模型为例来介绍 Bloch 方程的量化方法,同时,给出3池模型的框图和仿真结果,并说明磁化转移(magnetizationtransfer,MT)对 CEST 量化的影响.2池模型和3 池模型的 CEST 交换示意图如图1所示.
在2 池模型中,描述2 池交换过程用12 个参数描述.其中:T1i(i=a,b)表示i 池的纵向弛豫时间;T2i(i=a,b)表示i 池的横向弛豫时间;Ma 表示水池核自旋的化学位移;Mb 表示可交换质子池核自旋的化学位移;Moa 表示水池的可交换氢原子核在初始条件下的平衡浓度;γM0b 表示可交换质子池的可交换氢原子核在初始条件下的平衡浓度与水池之比;kba 表示可交换质子池核自旋交换到水池的速率;kab 表示水池的核自旋交换到可交换质子池的速率;ω1 表示描述预饱和射频脉冲的强度;t 表示脉冲施加时间(下面公式中kab和kba 的意义相同).
在核磁矩和磁化强度矢量的概念基础上,通过在旋转坐标系下,MRI系统中B1-sat 是从x 方向上加入的和2池模型的交换,得到描述图1A 所示2池模型的Bloch方程如公式1所示.
其中,描述b和a 分别表示可交换质子池和水池.例如,Mb (t)表示在时间t 时,可交换质子池的磁化在x 轴上的分量;Mb 和 Ma 分别表示在可交换质子池和水池在z 轴上的热平衡磁化;ω 表示 RF 照射的频率;ωb 和ωa 分别表示可交换质子池和水池的拉莫尔频率;Δωb 和Δωa 分别表示ωb -ω 和ωa-ω .
图1模型示意图中,仿真的各参数如表1所示.序列的参数设置如下:Z 的初始值为1;B0 =7 T;2池模型的饱和时间tp =5s,3池模型的饱和时间tp =80s;B1-sat 分别为:1μT,2μT,3μT,4 μT,5μT 和6μT.模型的仿真结果如图2 所示.其中,上面大的光滑的曲线为饱和交换后水的 Z 谱, 左下方比较矮的曲线为 Diff_Z 谱,即饱和交换之前水的Z谱和饱和交换之后水的Z谱的差.
由2池和3池的对比结果可以看出:在 CEST发生化学交换(~2ppm)的地方,2 池模型在仿真 B1_sat 范围内,Z 谱的下降都比较明显,而3 池模型在B 1_sat4μT 时Z 谱的下降已经看不到.因此, MT 成分大大降低了 CEST 的特异性,尤其是在B1_sat 大的时候.但是 B1_sat 小的时候,病变部位和正常组织的差异较小,即:区别病变部位和正常组织需要较大的 B1_sat.因 此,对 于量化 CEST -MRI,如何降低 MT 成分的影响是需要考虑的很重要的一个因素.
Bloch 方程不仅可以对 CEST 实验进行模拟仿 真,而 且 可 以 对 CEST 测 量 值 进 行 数 值 拟合[19,23].此外,用扩展的 Bloch 方程描述的多池模型,考虑到 RF 照射 CEST 的 MT 和 NOE[24]伴随效应.Bloch方程的一个最大的不足就是计算复杂.因此,有各种假设对 Bloch 方程进行简化,如强饱和脉冲的假设和弱饱和脉冲的假设[25].将 CEST数据与用非线性最小二乘法优化的 Bloch 方程拟合可以提供相关 MRI参数的值,这有助于设计特定应用的最优 PARACEST 试剂[19].但是,在实际应用中,由于 Bloch 方程可变参数繁多,直接拟合难以标准化,因此研究者们提出了其他较为简化的量化方法.
3 CEST-MRI量化方法介绍
3.1 简 单 磁 化 转 移 不 对 称 性 (magnetization transfer ratio based on asymmetry analysis, MTRasym )分析及其改进
由于Bloch方程比较复杂,以水频率为中心将Z 谱 两 侧 相 减 的 磁 化 转 移 率 不 对 称 分 析 法(MTRasym )成为一种常用的 CEST- MRI量化方法[21,26],MTR 的定义如下:
其中,S0 是 RF 照射前的水信号的强度,Ssat(Δω)和Ssat(-Δω)分别是经过 RF 照射后在标记频率和参考频率处的信号(后面公式 S0、Ssat(Δω)和 Ssat(-Δω)表示的意义相同).
该量化方法有以下缺点:(1)容易受到 B0 场不均匀性的影响[27].(2)MTR
方法容易受到各种混淆参数的影响.包括组织松弛、MT、MTC[28].
更重要的是 MTRasym 不能从 CEST 对比中区别上场的 NOE 效应.(3)MTRasym 方法没有校正水的纵向弛豫效应,这是影响 CEST 信号幅度的主要因素[29].尽管如此,MTR 仍是目前 CEST- MRI领域一 种 简 单 有 效 的 量 化 CEST - MRI 的 方法[30].
针对 MTRasym 量化 CEST-MRI存在的不足,提出了一系列的改进措施.例如:针对 MTRasym 容易受B0 场不均匀性影响,提出了水饱和移位参考(watersaturationshiftreference,WASSR)[31]和同时校正B0 场和B1 场的不均匀性(Simultaneous mappingofwatershiftandB ,WASABI)[32]两种方法.针对减弱 CEST 的竞争效应,提出了三频偏方法[2,33]和洛伦兹拟合[34-37]等量化方法.针对没有校正水的纵向弛豫效应的问题,提出了表观交换依赖弛豫(apparentexchange-dependentrelaxa- tion,AREX)[22,29,38-39]的量化方法.
3.2 三频偏的方法
三频偏的方法通过用特定共振频率照射如酰胺、胺基质子等,用和共振频率两个相近频率的平均值作为参考信号,用特定频率处的信号作为标记信号的一种量化方法[2,33].三频偏方法被证明可以有效减弱 MT 不对称性和 NOE 效应[29].三频偏及其量化 APT 和 NOE 的定义如下[33]:
其中,APT* 表示使用三频偏方法得到的酰胺质子转移.NOE* 表示使用三频偏方法得到的 NOE效应.
三频偏方法可以减弱 CEST 的一些竞争效应,例如:MT 不对称性和 NOEs.该量化方法已经成功的用于肿瘤[2]和中风[33]的检测.但是三频偏量化的方法存在如下的缺点:(1)三频偏方法线性假设过于简单,明显低估了 APT 和rNOE 在~3.5(NOE(~3.5))的 饱和转移[35,40].B _较大时,APT 和 NOE 的峰值变宽,导 致低估 APT* 和NOE* [33];同时,随着B _增大,饱和效率达到最大值,饱和溢出和 MT 效应一直增加[25,41],从而导致 APT* 和 NOE* 对比度的下降;(2)APT* 使用三频偏的方法量化时,会受到相邻共振质子的干扰,如胺基质子在2ppm 到3ppm[29].
3.3 洛伦兹拟合
洛伦兹拟合是一个较为简单的最小二乘法Z 谱拟合的量化方法[36].洛伦兹拟合的定义如下[40]:
其中,Ai 、ωi 和δi 分别表示第i个池的幅度、频偏和线宽,N 表示拟合池的个数,一般的洛伦兹拟合是指N =1的情况,如果N 大于1就是多池洛伦兹拟合.
洛伦兹差(Lorentziandifference,LD)是洛伦兹拟合的曲线与Z 谱数据的差[35,42].在该方法中,用洛伦兹函数去拟合Z谱中的-10ppm 到-6.25 ppm、-0.5ppm 到 0.5ppm 和 6.25ppm 到 10 ppm,接着用样条插值完成整个拟合过程,并用拟合的频谱结果作为代表 DS和 MT 效应参考信号;最后,用拟合的结果和 Z 谱数据的差作为 CEST信号进行量化[35,43].
3.4 倒Z谱分析法
最近的一项研究表明 CEST 信号、DS 信号和MT 信号并不是线性叠加在一起,而是反向加在一起的[38].AREX 和 MTR 是两种常见的倒Z谱分析法.其中,AREX 是一种从稳态下得到的标记信号的倒数减去参考信号的倒数的一种量化方 法[29].AREX
可以校正CEST竞争效应中半固体MT 效应、T1、DS效应和水的弛豫效应.AREX 和MTRRex的定义分别为[44]:
图3是不同 B1_sat 时Z 谱和 AREX 的仿真结果,仿真Z 谱的参数设置和图2一样.其中,上面光滑的为Z 谱,左下方为 AREX 的图.由图2 和图3的结果可以看出:相 同功率下,AREX 的峰值比Diff_Z 谱的峰值大(尤其是3池模型),说明 AREX
量化方法中 CEST 的特异性更强.同时也说明:相比饱和交换之前水的Z 谱和饱和交换之后水的Z 谱的差值,AREX 可以降低 MT 效应对 CEST 效应的影响.其中,在0ppm 附近,由于分母为0,所以 AREX 非常的大,这和文献[45]的研究结果一致.
3.5 CEST 比率的方法(CESTratio,CESTR)和参考值归一化后的 CESTR 的方法(CESTRnr)
MRI信号的强度取决于多种参数,包括质子浓度、交换质子的数目、质子交换率、T1、T2、饱和时间和饱和效率.最常用的 CEST 图像的量化是磁化转移率 (magnetizationtransferratio,MTR), MTR 的定义如下:
CEST 比率的定义如下[45]:
在最初对 APT 量化的过程中,选 取 -3.5 ppm 作为参考信号,就是前面3.1 节的 MTRasym 的量化方法[46].最近,Heo等人通过使用插值半固体参考 信 号 (extrapolated semi-solid MT refer- ence,EMR)量化 CESTR[6,47].
参考 值 归 一 化 后 的 CEST 比 率 的 定 义 如下[45]:
CESTR 和 CESTRnr 中的参考信号 (也 就是ZEMR)和 标记信号分别是拟合 2 池 MT 模型和CEST 度量计算中的经过 B0 校正过的Z 谱数据. 仿真证明,在临床的3T 和4.7 T 的时候,CESTR和 CESTRnr 量化更可靠[45].CESTR 的 EMR 谱(ZEMR)可以 通过相应的 ω1和频谱范围 Δ 获得.
CESTR 的Zlab是通过5池Bloch方程获得.具体获得方法只需对前面介绍的2 池模型的 Bloch 方程进行扩展即可.图4和图5分别为B0 =3T和9.4T 时5池模型在B1_sat 分别等于0.5μT,1μT,1.5 μT,2μT,2.5μT 和3μT 六种饱和功率下的基于 Bloch方程的Z 谱和几种常见量化方法:CESTR、 CESTRnr、MTRRex和 AREX 的仿真结果.仿真Z 谱中使用的参数和文献[45]的一样.从图5到图6可以看出:相同 B1_sat 时,3 T 时 Z 谱在3.5ppm 和 2 ppm 的下降均没有9.4 T 时的明显;特别地,在高场(B0 =9.4 T)、B1_sat 较低的时候 (尤 其是在 B1_sat <=2μT),APT 在3.5ppm 和 Amine在2 ppm 的下降看得很清楚;对于 CESTR、CESTRnr、 MTRRex和 AREX 四种量化方法,随着 B0 场强的增大,2ppm 和3.5ppm 的峰值都变得更加明显,而且3.5ppm 的峰值比较窄,2ppm 的峰值比较宽,因此,低场时的 CEST 信息被隐藏.这也是德国神经退行性疾病中心(GermanCenterforNeuro- degenerativeDiseases,DZNE)Zaiss 等人在 2019年2月最新发表深度低场预测高场的信息这篇论文的目的[48].
4 小结与展望
关键词:网上教学;供给侧改革;优化
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2017)26-0080-03
《建设工程项目管理》是开放教育土木工程(工程管理方向)专业的核心课程,其所涉及的知识与工作实际十分贴合,对于在实际工程管理中起到的作用非常之大。而且本课程还是全国一级建造师执业资格考试的必考科目,所以本课程的建设和教学应与工作实际和学员考证需求紧密结合起来。但受到开放教育教学特点的影响,难以有效地将二者结合起来。为了克服这一问题,笔者从自身专业特c出发,通过近两年的努力,积极推进课程与岗位、证书的对接,使课程的网上教学活动得到了优化,并取得了较好的成效。
一、网上教学活动优化思路
(一)以往网上教学存在问题
在以往的网上教学活动中,客观上,一方面,由于教学所提供的资源不够丰富,并且难以为学员解决实际的问题导致学员的学习兴趣不高;另一方面,由于网上教学载体形式单一,程序繁琐,制约了学员学习的热情。主观上,由于教学组织者和教学参与者的参与热情不够,也导致以往的网上教学活动流于形式,没能取得良好的效果。[1]但实际上,学员对于网上教学和课程的学习需求非常大,特别是对于能够解决学员实际问题,为学员实际需求服务的网络教学内容,有很高的学习热情。
(二)主要思路
开放教育网上教学活动的关键在于课程资源的供给与学员需求的无缝对接,在于教学媒介的手段足够丰富。基于这一特点,笔者对《建设工程项目管理》课程的网上教学活动作如下优化思考。
1.以“岗、证、课”结合为思路,对课程资源和内容进行重构,即:“岗位能力提升、一级建造师考试培训、课程学习”三者有机结合起来,满足学员的学习需求。如在本课程《建设工程项目管理》中,可以将岗位知识、考证知识和课程知识有机结合起来,构建以微视频课程资源、在线题库资源、典型案例解析资源、执业资格能力资源为一体的四大网络教学资源模块。
2.进一步丰富网络教学媒介形式,建立以课程微信公众号为主要媒介资源的网络资源媒介,丰富和优化网上教学活动的媒介手段[2]。在当前互联网+背景下的大数据时代,丰富和改善网络教学的媒介和载体,让学员随时随地便捷地使用学习网络教学资源,将会极大地提升学员的学习兴趣。一方面可以丰富和完善掌上电大APP的学习资源,充分发挥掌上电大学习APP的作用,提高学员使用掌上电大APP学习的普及率,另一方面在开放教育中推行建立专业或者专业课程微信公众号,利用微信公众号实现学员随时随地的学习。比如说:建立土木类专业《建设工程项目管理》课程的微信公众号,由学校专业团队负责对本公众号的管理和维护,实时更新完善视频资源、课程资源,为学员随时随地交流学习提供平台,实现教学互动学习互动的零距离。
3.构建线上、线下一体的教学组织体系。通过网上教学活动的组织以及线下教学活动的补充,教师与学员、学员与学员之间的互动交流,通过互动交流提升学员的自主学习能力、提高学员应用新媒体的水平、解决学员在实际工作和复习备考一级建造师的问题。比如将工程项目管理基本理论模块设置为视频在线学习(规定学时)、在线题库练习、模块知识小测验、仿真资格考试能力测试四个小任务,依次完成指定任务。并在任务中设置奖励,提高任务的趣味性。
4.成立专业或课程教学团队,为网上教学活动提供智力保障。网上教学活动是开放教育人才培养和专业课程学习的组成部分,本人认为应从各省开放教育人才培养的高度出发,成立以省级电大(开放大学)专业带头人为核心,各基层电大专业教师为主体的专业课程教学团队,紧密合作,协调分工,对网络教学资源进行维护和更新,从而实现全省电大同一专业的网络教学资源全面共享,既可以提高网络资源的有效性,降低人才培养的人力成本,又能将全省各级电大的师资整合起来,为开放教育培养质量的提升提供智力保障。
二、网上教学实施过程
(一)网上教学活动模式优化
根据建筑类行业的实际特点,结合本课程与建筑行业之间的关系,按图1所示,优化本课程网上教学活动的模式。通过对学生的分析,重新整合知识点,并将岗位能力、课程要求和证书要求结合起来,开展网上教学活动。
按照这种优化模式,一方面通过对学员的构成和需求在组织教学前进行具体分析,提高了网上教学活动组织的针对性[3],另一方面通过对课程知识的整合,特别是将岗位知识点、课程知识点和考证知识点整合在一起,提高了课程知识的适应性。同时,在网上教学活动媒介和组织形式上的优化,比如网上教学活动的内容以及真题构建,又如用微信互动、过程学习提醒和过程评价等方式,进一步提高了学员学习兴趣和热情,从而解决了以前课程理论性太强,与实际结合不紧密的不足,提高了学员学习的兴趣。
(二)模式优化细节
1.教学组织前对学情进行分析,以浙江金华电大2015春土木专业为例,学员的情况如表1。通过对学员学情的分析,完善网上教学课程资源建设和课程组织的方式。从分析情况来看,学员的学习目标明确,年龄构成以20到30岁的为主,对于新媒介的使用都较为熟悉。但工学矛盾较大、学习时间相对偏少。
2.整合优化课程知识点,将全国注册一级建造师执业资格《建设工程项目管理》科目的考核知识点和本课程的知识点整合起来,并结合实际岗位能力的需求,将课程知识点划分成五大模块,即:工程项目管理基本理论模块;工程项目管理招投标与合同管理模块;工程项目质量、成本、进度管理模块;工程项目管理实务模块;一级建造师《建设工程项目管理》备考模块。
3.编制网上教学活动导学单,利用导学单明确使用媒体的时间、任务安排及要求,以主动引导学员参加网上教学活动,明确学员的任务[4]。通过事先,提高学员的参与率。导学单格式如下表2:
4.运用微信公众号、QQ、论坛等新媒体,开展网上教学活动,围绕《建设工程项目管理》课程的知识特点,通过集中讨论、个别交流、共同参与等形式开展网上教学活动。具体的实施办法如下:
(1)利用班级QQ群、论坛等开展集中网上教学活动。
(2)利用QQ、论坛、微信、邮件进行学员个别交流活动。
三、教学主要成效
通过《建设工程项目管理》网上教学模式的优化和具体的活动实施,笔者认为本课程网上教学取得了以下几个方面的成效:
1.学员远程实验平台测验完成率大幅提高。以金华电大2015秋土木工程本科学员为例,通过网上教学活动,学员之间互帮互助,该班级学员的远程实验平台作业完成率100%,并且在学期末前一个多月前就已全部完成,一改以往需要辅导教师不断督促才能勉强完成的情况,有效地提高了学员自主学习的能力。
2.实现了教师与学员、学员与学员之间全方位的互动交流。围绕“岗位能力提升、一级建造师考试培训、课程学习”三者有机结合交流学习的宗旨,教师利用QQ、论坛、微信等各类新媒体发起学习讨论,实现教师与学员、学员与学员之间的互动交流。
3.学员综合能力得到一定提升。通过网上教学模式活动的开展,一方面学员使用微信、论坛等新媒体的能力得到了提高,从学员参与的热情以及论坛的使用率和学员远程实验平台的完成率就可以发现。另一方面学员自主学习的能力也得到了提升,学员能够通过自学后利用论坛和QQ进行交流和学习,互相之间能对某些问题进行答疑解惑。再则就是学员的学习认识能力有了提升,通过本次教学活动学员对课程学习和专业学习的认识和分析能力有了提升,学会了用比较的方式去分析问题和解决问题。
4.推动了课程备课模式的改进。利用本次网上教学活动,转变了以往就书本知识而讲书本知识的传统观念,将与本课程相关联的岗位知识、考证知识结合起来[5],并以一级建造师《建设工程项目管理》考试科目为抓手,将该考试科目的一些重点和难点知识,比如预付款的支付、项目的实际管理要求等等与实际相关的知识点作为备课重点,通过网上教学活动的方式与学员共同交流和学习,提高了本课程学习的实效性。
四、结语
笔者认为开放大学系统提出的“深化课程教学改革,创新网上教学模式,落实教学过程,提升开放教育教学质量”的工作一直在路上,只要每位任课教师能够转变观念,在省级电大(开放大学)以及各基层电大的共同带领下不断完善网络教学资源,丰富网络教学媒介形式,树立团队合作的意识,定能实现供给侧改革思路下开放教育人才培养可持续发展目标。
参考文献:
[1]胡新生,张朝霞,熊锟,张福萍.开放大学背景下面授教学与网上教学一体化设计研究[J].中远程教育,2012,(07),48-52.
[2]隋永博,曹旭.基于网络教学平台的大学计算机教学改革探讨[J].科教导刊,2016,(25):120-121.
中图分类号:TQ021.8 文献标识码: A 文章编号: 1674-0432(2014)-15-96-1
化学工程是一门将一系列化学有关的知识进行深研究的化学或物理过程的知识学科,它还包括对原有化学设备进行改革,以化学思想为基础将理论和实际工程知识糅合。具体工作可包括研发新产品、设计、模拟、操作实验来强化装备等硬件设施。化学工程领域包括范围广泛,其中有机化学、无机化学、石油化工等领域,因此化学工程是国民经济建设从而推动社会进步重要的工程领域。目前化学工程技术的发展方向是逐渐趋向连续化、集约化、自动化、高效化和自动化、精密化。由于化学工程技术被广泛运用到生活领域所以对其的研究是十分有必要的。
1 化学工程技术的新热点
1.1化学超临界反应技术
超临界的化学反应技术是指反应过程中的温度和压力都在临界点之上,这样的状态往往是液体和气体之间。这样形式的存在被广泛运用到生物化工、食品、医药等领域,已经显示出很好的效益,发展前景很好,但近年来的探究和发展阶段仍处于初级,待进一步深入研究。
1.2绿色化学研究技术
绿色化学由于能够有效避免对环境的污染,近年来备受推崇。绿色化学就是指利用化学反应技术来充分利用资源、减少污染物的产生来起到对环境的保护。比如,它可以对产生污染物的相关溶剂和废料进行处理,利用原子技术或高选择性的化学反应生产处对环境有利的产品,这不仅能够增加经济效益而且带来可观的社会效益。
1.3分离技术的新研究
首先,分离技术强调对生产设备的强化,其次是生产技术。总结来说就是将设备更新,将生产率提高的技术都属于化学分离技术的结果。古老的分离技术方法是利用各种材料沸点不同将其分离然后做研究。随着科学技术的发展和各领域研究合作分工改变为分离技术新发展提供了广阔的前景。比如近年来,在力学的传递以及多相流方面,采用信息技术发生分离,还有分子的模拟就很大的提高了预测热力学平衡的水平,对分子的人为设计加速了分离等等。因此进一步研究高效的分离技术有着深远的意义。
2 传热过程新的研究发展方向
2.1传热学中细微尺度的研究进展
细微尺度是指从时间尺度和空间尺度进行更细微的研究的热学范畴,如今它在热学中已经形成了一个分支,具有广阔的发展前景。当一个物体的尺寸远大于其载体时,这样的情况会存在,但是由于尺寸的更加细微,原来的假设影响因素也会发生相应变化。目前纳米技术已经取得显著的成绩,很多领域都是围绕传热学中的细微尺度技术进行研究的,近年来取得了高集成电路、多空介质流等新成果,产生了巨大的经济效益。
2.2传热设备的研究进展
近些年来,利用翘片来强化传热,管外的翘片强化传热原理包括有前缘效应和非稳定性扰动以及减薄边界层等几种。常用的片是冲缝片和百叶窗。将来对此的研究应该将分布参数和场地模拟相结合,来优化传热装置结构的参数,实现管翘式的传热针设计。
2.3与计算机技术的相结合
计算机技术的不断进步是化学中大量的技术问题能够得到有效的解决。同时节约了大量的人力物力财力,也增加了数据和相关机械的精密度。计算机的主要贡献表现在计算流体力学、数值传热力学、采用计算机技术进行统计、计算有利于将数据更直观的表现出来,表现形式更加多样,能够有效分析大量实验数据。
2.4与材料科学和信息工程相结合
科学的进步和新技术的研究涌现就为化学工程的研究提出了新的机遇。如何形成优质的服务体系和完整地理论作为研发支撑成为化学工程面临的问题。所以它必将进入一个新的发展阶段,在发展中应注重与多学科的交叉,更多的研究应该包括信息和化学应用、生物与化学以及能源环境与化学相结合的学科,这都为化学工程的发展提供了新的研究方向。由于信息技术不断深入各个行业,为此通过信息技术可以将大量的信息收集、整理进行数据统计分析,得出的结论可以为化学工程发展研究提供新的方向。
3结语
综上所述,伴随科学技术的发展,专业人员对化学工程研究已经从单一走向研究领域与多学科相结合的多元化方向发展,随着时代的需要,科学技术的发展,新的发展热点的出现,化学工程的发展方向也是多元化的。化学工程技术多元的发展给社会带来的也将是全新的面貌,推动整个社会向前的步伐。
参考文献
[1]韩钢,宋.化学工程技术中微化工技术的应用研究.[J].中国科技博览,2012(34).
【中图分类号】G71
基于工作过程的学习领域课程的开发,已成为近年来高等职业教育课程改革的热点。基于工作过程的学习领域课程的实质,在于课程的内容和结构追求的不是学科架构的系统化,而是工作过程的系统化。职业教育的课程开发必须打破传统学科系统化的束缚,将学习过程、工作过程与学生的能力和个性发展联系起来,将“工作过程的学习”和“课堂上的学习”整合为一个整体,将职业资格研究(包括职业分析、工作分析、企业生产过程分析)、个人发展目标分析与教学分析和教学设计结合在一起。
高职电气自动化技术专业中维修电工的考证及学习是重要项目之一,该专业的核心能力对应的职业是维修电工。因此,以“维修电工”国家职业资格为标准、以高职人才培养为目标,将维修电工职业标准有机地融合到专业学习领域课程开发中,以项目为导向、工作任务为载体,重建专业方向课程体系,以解决专业教学与“维修电工”考证相互脱节的问题。
一、确立专业及其面向的职业岗位分析
根据企业调研,维修电工在不同工业部门如机械与设备制造、汽车与配件工业、电子工业,从事自动化生产。除操作自动化生产设备以外,这些设备的维护成为其专业工作的重点。此外,维修电工参加生产设备的建造和改造,进行电子维修,在车间维修并制造电子、自动化和信息技术的组件和仪器。符合专业要求的工具、测量仪器和测试材料、旨在有效完成任务的工作和工作岗位设计以及与同事进行符合专业要求的交流,都属于维修电工的任务要求。同时,还要考虑经济、社会和生态的不同要求以及由此引起的对职业行动的要求。维修电工能对任务进行整体性观察并在完整性的工作过程背景下对其进行组织,也就是说,借助其企业关联知识关注过程的衔接并与其他部门(机械保养、物流、制造计划等)合作。
二、提取、划分、分析典型工作任务学习难度范围
电气自动化技术专业中以电气设备的运行、安装、调试与维护及营销服务等职业岗位为导向,重点突出技能培养,根据职业能力要求提炼难度1-4级的典型工作任务。
(一)职业定向的工作任务(学习难度范围1)
工厂车间照明设备的安装与维修、普通机床电气设备的安装与维修、电机的安装与维修、小型电子设备的调整与改装、工厂供电系统的计划与实施、做计算机控制系统的计划与实施、印刷电路板的设计与制作、现场总线与工业以太网的构建与维护。
(二)系统的工作任务(学习难度范围2)
交直流调速系统的安装与调试、设备运行的检测与控制、电气设备控制的安装于调试、生产过程的组织与实施。
(三)蕴含问题的特殊工作任务(学习难度范围3)
电气设备的调整与改装、数控设备的维护。
(四)无法预测的工作任务(学习难度范围4)
生产设备的调整及生产质量保障。
三、构建电气自动化技术专业维修电工方向教学计划
根据典型的工作任务,提炼支撑课程,形成了12门理实一体化的学习领域课程。
学习领域课程编号 学习领域课程 基准学时
小计 第一学年 第二学年 第三学年
1 电工基本技能 2周 2周
2 电气设备安装与维护 4周 4周
3 电子技术应用实训 4周 4周
4 电气绘图技术实训 8周 8周
5 PLC应用技术 5周 5周
6 组态控制技术 2周 2周
7 传感器技术及应用 4周 4周
8 交直流调速系统与应用 3周 3周
9 集散控制与现场总线 3周 3周
10 单片机应用技术 4周 4周
11 自动化课程综合实训 5周 5周
12 自动化课程设计 2周 2周
合计学时 1196 468 286 442
四、建立学习领域课程教学计划(举例)
以《自动化课程综合实训》学习领域课程为例,建立讲授单元和行动单元学习任务和内容。讲授单元主要对PLC的组成与基本工作原理;PLC的编程软件及编号范围;基本逻辑指令表示方法及其应用方法;掌握梯形图的绘制原则及PLC设计原则、步骤和方法;对典型生产线工业控制对象进行系统的意见设计、系统的软件设计、安装调试设计,共计150课时。
行动单元中建立五个子学习领域课程:
1、控制方案的初步设计(学时:12),学生根据项目设计要求对现有自动化生产线及需改造的生产线进行调查,并据此形成初步控制方案,讨论并完善,最后提交具体可操作性的控制方案。
2、交流电机的PLC变频控制(学时:48),根据项目设计要求对交流电机的控制所需器件进行选型,了解并掌握器件使用完成交流电机的PLC变频控制子系统,并进行系统测试调试,最后提交相关技术文档。
3、物料分控系统的PLC控制(学时:24),根据控制方案要求对物料分控所需器件进行选型,了解并掌握器件的使用方法,完成物料分控子系统,并进行系统测试调试,最后提交相关技术文档。
4、机械手的PLC控制(学时:30),根据控制方案要求,了解并掌握机械手的使用方法,完成机械手控制子系统,并进行测试与调试,最后提交相关技术文档。
5、系统综合计划与调试(学时:36),根据控制方案要求,对全系统进行联合调试,分析并找出其中的问题,完成全系统了,并提交相关技术文档。
将维修电工职业标准融合到高职电气自动化技术专业的学习领域进行课程开发中,解构原有的基于知识储备的学科体系架构课程,重构基于知识应用的行动体系架构课程,凝练工作过程要素,在现实的职业资格基础上,培养学生普适的职业资格,为未来的职业资格奠定基础,提升学生的“职业竞争力”。通过学习领域课程的开发研究,可有效的优化学校课程资源,在有限的课时内发挥课程最大的作用;可优化课程结构,提高人才培养质量,体现高等职业教育人才培养的特色;为相关专业的课程结构的改革提供思路,使之更加适应培养学生综合职业能力和全面素质的需求。
参考文献:
[1]王平均,王伟,韩宝如.基于工作过程的课程考核评价体系研究――以高职维修电工实训课程为例[J].辽宁高职学报2013(5):49-51.
燕山大学的化学工程与工艺专业在2017年全国第四轮学科评估中得分B,在河北省高校中仅次于河北工业大学,位居全省第二。在省内有较高影响力。下面以三方面对燕山大学的化学工程与工艺专业进行分析:
1、燕山大学化学工程与工艺专业研究方向:化工产品的生产工艺与技术设备的设计、开发、研究、模拟与优化,新型化工材料的合成工艺及性能等。
2、主要课程:无机与分析化学、有机化学、物理化学、化工原理、机械设计基础、电工与电子技术、化学反应工程、化工热力学、化工分离过程、化学工艺学、传递原理、催化
(来源:文章屋网 )
前言:
伴随科学技术的发展,专业人员对化学工程研究已经从单一走向研究领域与多学科相结合的多元化方向发展,随着时代的需要,科学技术的发展,新的发展热点的出现,化学工程的发展方向也是多元化的。化学工程技术多元的发展给社会带来的也将是全新的面貌,推动整个社会向前的步伐。
1化学工程技术的概述
化学工程技术主要研究化学生产过程中产品的研究开发,同时也需要设计和管理反应装置,因此它是一门集合理论和实际操作的综合性技术。在化学生产中运用化学工程生产技术,可以显著提高生产效率,缩短生产时间,同时还可以大幅提高产品的质量,减少成本和原材料的消耗,对于产品的开发以及技术的改进都具有非常重要的作用。
近几年我国的科学水平不断进步,化学工程技术越来越来越广泛地被应用在化学生产中。化学生产关系着全社会对化工产品呢的需求,也影响着我国其他产业的生产发展。化学工程技术在化学生产中的应用十分必要,对于维持人们的正常生活和社会的稳定都有重要作用,因此,其应用也越来越受到人们的重视。
2化学工程中的新型反应技术
2.1绿色化学反应技术
环境问题在当今社会的发展中尤为重要,而绿色化学就是指不会污染环境的,可以保护环境的化学技术。这种技术主要采用化学方法和技术来减少甚至消除潜在污染源,比如那些妨碍社会安全、对人类健康有害、影响生态环境的原材料都可以通过这种技术加以治理,从而减少环境污染,达到保护环境的目的。而且绿色化学技术可以将污染从源头就加以消除和治理,因此,对环境治理非常彻底。
2.2超临界化学反应技术
所谓的超临界液体就是指具有液体和气体双重性质的物质。当压力和温度都位于临界点之上时,其状态也位于气体和液体间。这种超临界流体的应用十分广泛,在生物化工、化学工业、医药工业以及食品工业等表现出巨大的研究价值,具有十分光明的发展前景。我国目前的超临界化学技术虽然已经取得巨大的进步,但是有些方面还不够成熟,仍然具有非常广阔的提升空间,需要继续努力开发。
2.3新分离技术
传统的分离技术是利用沸点不同,使不同的组分从分离塔中先后分离出来。首先是对设备的强化,随着科学水平的进步,分离技术也在不断地更新和改进,但是任然存在很多不足的地方。而信息技术的发展,给分离技术带来一个崭新的局面,人们将信息技术引进到分离技术的开发研究中,取得了非常明显的进步。比如在热力学的传递性质和多相流的研究过程中,就是引入信息技术,并使之发挥功效,进而达到分离的目的,此方法已经成为成熟的分离技术。再如分子模拟可以提高预测平衡性质的水平,进而加速分离分子,可以用于开发新型的高效分离剂。因此,信息技术的引入对于深入和促进分离技术的深入具有重要作用,并且还能显著提高工作效率。
3化学工程技术在化学生产中的应用新方向研究
3.1传热过程的强化
此研究主要是改进换热器的设备,通过这种方法来提高传热效率,并且使设备可以持续放热。要达到这个目的,就必须改进原来的设计工艺,开发新型传热材料,这样才能不断优化传热技术。
3.2微细尺度传热学
微细尺度是传热学中一个热点的分支学科,具有非常广阔的发展前景。当物体尺寸大于连续介质时,由于尺度微细,原来的影响因子也会发生变化,这样就导致了传入和流动规律的变化。目前的纳米和微米科学都取得了明显进步,也衍生了很多以微细尺度传热学为基础的研究领域,并取得了丰硕的成果,比如微型热管、多空介质流动传热、高集成度电子设备等多项研究成果。
3.3传热理论
一直以来,人们都在研究液体核态沸腾的原因。但是由于沸腾复杂多变,研究过程中无法进行准确的计算。目前的研究方法存在的严重缺陷是计算的准确率过低,而且必须以大量实验做为基础保障。因此我们必须从新角度来和研究问题,根据基本理论,找出新的计算方法和模型,不断深入研究传热理论。
3.4传热学中细微尺度的研究进展
细微尺度是指从时间尺度和空间尺度进行更细微的研究的热学范畴,如今它在热学中已经形成了一个分支,具有广阔的发展前景。当一个物体的尺寸远大于其载体时,这样的情况会存在,但是由于尺寸的更加细微,原来的假设影响因素也会发生相应变化。目前纳米技术已经取得显著的成绩,很多领域都是围绕传热学中的细微尺度技术进行研究的,近年来取得了高集成电路、多空介质流等新成果,产生了巨大的经济效益。
3.5传热设备的研究进展
近些年来,利用翘片来强化传热,管外的翘片强化传热原理包括有前缘效应和非稳定性扰动以及减薄边界层等几种。常用的片是冲缝片和百叶窗。将来对此的研究应该将分布参数和场地模拟相结合,来优化传热装置结构的参数,实现管翘式的传热针设计。
3.6与计算机技术的相结合
计算机技术的不断进步是化学中大量的技术问题能够得到有效的解决。同时节约了大量的人力物力财力,也增加了数据和相关机械的精密度。计算机的主要贡献表现在计算流体力学、数值传热力学、采用计算机技术进行统计、计算有利于将数据更直观的表现出来,表现形式更加多样,能够有效分析大量实验数据。
3.7与材料科学和信息工程相结合
科学的进步和新技术的研究涌现就为化学工程的研究提出了新的机遇。如何形成优质的服务体系和完整地理论作为研发支撑成为化学工程面临的问题。
所以它必将进入一个新的发展阶段,在发展中应注重与多学科的交叉,更多的研究应该包括信息和化学应用、生物与化学以及能源环境与化学相结合的学科,这都为化学工程的发展提供了新的研究方向。由于信息技术不断深入各个行业,为此通过信息技术可以将大量的信息收集、整理进行数据统计分析,得出结论可以为化学工程发展研究提供新的方向。
3.8做好人才工程的建设
21世纪国际社会的竞争实质上就是以科技实力为基础的综合国力的竞争,谁在科技上遥遥领先谁就掌握了国民经济发展制高点。科学技术的竞争说到底是人才的竞争,人才是科学技术发展的动力。而化学工程技术也同样需要优秀的人才,因此,我们要加强化学工程的教育,培养出更多的优秀化学人才。另外,还要提高化学工程待遇,加强国内外的学术交流。目前化学工程技术正处在飞越发展期,随着化学技术的不断加大,化学工程技术必将以全新的面貌展现在我们面前。
4结束语
综上所述,化学工程技术在化学生产中具有非常重要的作用,其应用大大提高了生产效率,节约了能源和原材料,而且还提高了产品的质量,为满足人们的日常需求和社会稳定作出重大贡献。
本文主要概述了化学工程技术,并对其中的一些核心技术和研究进展进行了阐述,比如绿色化学反应技术、超临界液体技术和新分离技术等,希望可以更好地促进化学工程技术的发展,不断改进理论和技术,进一步扩大其应用范围,使它发挥更大的作用,为人类提供更好的生活,同时促进社会的不断进步和发展。
参考文献:
[1]张杨.浅谈化学工程技术在化学生产中的应用[J].科技创新与应用.2014(08).
[2]陈伟.浅析化学工程技术在化工生产中的应用[J].科学专论.2013(01).
1能源化学工程专业的产生
随着世界经济的不断发展,人类社会对能源的需求越来越多。能源问题成为21世纪人类面临的最基本问题。长远来看,在全世界范围内,一次能源仍将占主要地位。但随着时间的推移,一次能源逐渐消耗殆尽,煤、石油和天然气等含碳能源的洁净、高效利用,太阳能、风能、地热能、生物质能、潮汐能等具有清洁、低碳、可再生等优势的新能源的开发利用将成为未来世界经济可持续发展的关键[1]。能源化学工程(EnergyChemicalEngineering)作为一个全新的专业应运而生。安徽理工大学化学工程学院化学工程系根据自身化学工程与工艺(煤化工方向)专业优势,仅仅依托煤化工,但又不局限于煤化工,涵盖燃料电池、生物质能、电化学、生物柴油、环境化工等丰富内容,于2011年新增加能源化学工程专业。关于能源化学工程专业本科生课程体系建构、人才培养模式正处于不断探索和完善中。
2能源化学工程专业的培养目标
能源化学作为化学的一门重要分支学科,是掌握煤炭综合利用,了解非煤矿物能源,普及新能源和可再生能源知识、实现能源科学利用和可持续发展的重要科学技术基础。它利用化学与化工的理论与技术来解决能量转换、能量储存及能量传输问题,以更好地为人类经济和社会生活服务。化学变化都伴随着能量的变化,而能源的使用实质就是能量形式发生转化的过程。能源化学因其化学反应直接或者通过化学制备材料技术间接实现能量的转换与储存[2-8]。能源化学工程属于一个全新的专业,之前仅在化学工程与工艺专业里涵盖过一点,主要关注怎么利用能源、对大自然造成较少的伤害。主要研究方向:能源清洁转化、煤化工、环境催化、绿色合成、新能源利用与化学转化环境化工。如今上升到一个全新的专业独立出来,可见其重要程度。专业人才培养目标的制定应建立在对专业深入分析和了解的基础上并结合国情、校情,能源化学工程专业人才培养目标也不例外[9-10]。考虑到安徽省淮南市是历史悠久的煤炭城市,再结合安徽理工大学化学工程学院化学工程系专业的办学特色,考虑专业发展与社会进步对人才的客观、合理的要求。我们在制定本专业的培养目标时,强调“厚基础、宽专业、高素质”,力求培养出具有良好科学素养、基础扎实、知识面宽,同时具有创新精神和国际视野的高级专门应用型人才[11-12]。学生具有了扎实的化学化工基础知识和能源化学工程专业知识就能够快速适应涉及化学、化工、传统和新能源加工等领域的相关工作。具备在煤炭行业、电力行业、石油石化行业、生物质转化利用行业从事低碳能源清洁化、可再生能源利用以及能源高效转化、化工用能评价等领域进行科学研究、生产设计和技术管理等工作。我们培养的毕业生工作领域包括:煤化工行业、天然气化工行业、电厂化工综合利用行业、生物质能源化工行业、固体废物综合处理行业、石油加工行业、石油化工行业、催化剂生产和研发行业。可以在这些行业从事设计、科学研究、技术管理等工作或继续深造[13-16]。
3能源化学工程专业课程体系
除了公共基础课程、学科专业必修课程,立足能源城淮南市,依托安徽理工大学化学工程学院化学工程系的特色开设特色专业核心课程(如,能源化工导论、化学反应工程、化工热力学、化工分离工程、煤化学、工业催化I、能源化工工艺学、化工过程分析与合成、化工过程控制、化工设计基础)以及特色专业任选课(如,煤气化工艺学、煤基合成燃料、生物质能源及化工、燃烧工程、燃料电池、现代仪器分析、电化学工程、膜科学技术过程与原理、基本有机化工工艺、废弃物处理与资源化、环境化工、化工专业英语)。此外专业实践模块本系能源化学工程专业开设的专业基础实验-《煤化学及工艺学实验》,包含实验项目:煤样的制备、煤样的粒度分析、煤样堆积密度的测定;煤中水分、灰分、挥发分产率的测定及固定碳的计算;煤中硫元素的测定;煤的发热量测定;煤中碳氢元素的分析;煤气成分分析;烟煤坩埚膨胀序数的测定;烟煤奥亚膨胀度的测定;煤的粘结性指数的测定;煤灰熔融性的测定。这些实验项目以煤化工为特色,厚基础理论,意在培养学生扎实的理论基础。开设的专业实验-《能源化工专业实验》,包含实验项目:煤样的XRD分析;煤的热重分析;水煤浆的制备和性能评价;油品的常压蒸馏;生物柴油制备及性能评价;石油产品的性能测定1;石油产品的性能测定2;电化学-燃料电池电化学性质的测定;电化学-质子交换膜电化学性质的测定。这些实验项目不限于煤化工,设计生物柴油,电化学,燃料电池等,重在拓展知识面,培养宽专业,高素质人才。
4能源化学工程专业建设中存在的问题
安徽理工大学化学工程学院化学工程系根据自身化学工程与工艺(煤化工方向)专业优势,开设能源化学工程专业,经过这些年的不断摸索,至今已有一届毕业生,通过学生反馈,在专业建设上仍有一些不足:
(1)专业实践教学条件有待改善。就当前现状来看,本专业实验条件还相对落后,缺少大型分析仪器和设备,实验室建设相对滞后,现有实验器材台数还不能很好满足学生分组实验要求。
(2)师资队伍建设还需进一步加强。由于本专业办学历史较短,师资力量相对不足,专业结构也不近合理,一批青年教师还需逐渐成长,缺乏高水平科研项目和教学研究成果。
(3)部分课程设置不尽合理,同时,专业基础课、专业课开课的先后顺序还需进一步调整和完善。对于新开设的课程,有的授课教师对内容不太熟练,有必要加强教师的授课水平,有条件的话可以走出去,加强与兄弟院校和科研院所的交流合作。
(4)校外实习基地建设有待加强。现有实习基地以煤化工企业为主,与能源化学工程专业培养目标中强调的“宽专业”背景还有一定差距[17]。以煤化工行业为背景的院校能源化学工程专业建设是一个不断发展的过程。在开设该专业时仍需明确方向,吸收、借鉴相关院校办学经验,不断摸索、改进、完善专业建设。不仅要办出自身专业特色,还要进一步解放思想,紧跟经济社会发展需要,培养出适应经济社会发展的高素质应用型人才。截止到目前为止,安徽理工大学能源化学工程专业建设经费陆续到位,新进大型设备招投标已完成,等待供货、安装调试。专业教师也正忙于实验室和实训基地的规划设计。结合应用型人才培养目标,学院领导带领专业教师通过广泛调研,集众家之长,具有专业特色的实践教学基地也逐步落实到位。相信安徽理工大学能源化学工程专业的明天会更加光辉灿烂。
参考文献
[1]刘淑芝,王宝辉,陈彦广,等.能源化学工程专业建设探索与实践[J].教育教学论坛,2014(06):209-210.
[2]韩军,何选明,王世杰,等.《能源化学》教学团队多导师制的探讨[J].科教导刊(上旬刊),2011(09):72-73.
[3]龚启迪.浅析我国能源化学发展模式[J].化工管理,2015(24):4.
[4]2013年贵州大学新增专业介绍及就业方向[OL].高中频道-中国教育在线,gaozhong.eol,2013.
[5]2013年东北电力大学新增专业介绍及就业方向[OL].高中频道-中国教育在线,gaozhong.eol,2013.
[6]《能源化学》[OL].重庆创业资讯共享平台-重庆高技术创业中心,www.cqibi.cn.
[7]能源化学工程专业-百度文库[OL].wenku.baidu.c,2012.
[8]能源化学工程-百度文库[OL].wenku.baidu.c,2012.
[9]孟广波,毕孝国,付洪亮.能源化学工程专业优化实践教学体系研究[J].中国电力教育,2014(03):145-146.
[10]钟国清.无机及分析化学课程改革的实践与思考[J].化工高等教育,2007(05):11-14.
[11]徐美玲,李风海.能源化学工程专业无机化学教学改革的探索[J].山东化工,2015,44(17):150-151.
[12]高庆宇,吕小丽,蒋荣立,等.能源化学化工实验课程体系的建设与实践[J].化工高等教育,2009,26(02):20-23.
[13]陈彦广,韩洪晶,陈颖,等.基于国际化、工程化能源化学工程创新人才培养模式的评价及效果[J].教育教学论坛,2013(13):224-225.
[14]陈彦广,韩洪晶,杨金保,等.能源化学工程专业本科生创新能力培养体系的建立与实践[J].教育教学论坛,2013(15):228-229.
[15]王淑勤,郭天祥,汪黎东.能源化学工程专业建设初探[J].山东化工,2015,44(19):116-117.
关键词:
发展方向;化学工程;应用
引言:
当今社会科学技术发展水平越来越成为国家综合国力的重要体现,其应用范围也不扩大,涉及到人么生活中的方方面面。其中,化学生产中也应用到了化学工程建设技术,并受到越来越多的人关注。在各个行业的发展当中,化学工程技术也起到了重要的作用。因此,对于化学工程技术在化学生产中的应用探讨研究是非常必要的,全文也主要对此进行了探讨分析。所谓化学工程技术,主要指的是将化学生产过程中的开发、研究作为研究的基础,对化学生产过程中的过程装置进行设计、制作以及管理的一项具有综合性的科学技术。通过实践证明,化学工程技术在化学生产中的应用效果十分显著,它对于提高生产效率、降低生产过程中的消耗、利益最大化起着至关重要的作用。同时也引导着企业生产技术的改革,对于技术的研发、完善都有很大的影响。
一:新型反应技术的研究
1、超临界化学反应技术
通常情况下,流体状态表现为气体和液体两种形态的混合,同时流体的压力以及温度都在临界点之上,达到这两种指标的液体便可以称为超临界液体。超临界液体广泛应用于社会生产的方方面面,在食品工业、医药工业、生物工业以及化学工业等方面都有着较为广泛地应用。在社会生产中的作用越来越明显,也正是这个原因,其未来的发展前景也十分明朗。这些年来,随着人们对生态环境关注力度的提升,科学技术的应用也逐渐扩展到了生态这一领域,超临界水氧化法的应用便是生态环境保护的重要体现。尽管这些技术的发展都还不够成熟、完善,但是这些都体现了超临界化学反应技术的社会作用和发展前景。
2、绿色化学反应技术
由于全社会对生态环境越来越多的关注,绿色化学反应技术被广泛应用到了保护环境者一领域当中。所谓绿色化学,就说对于环境有保护作用,不会产生污染体的一项化学工程技术。通俗化来说就是指:通过对化学技术的运用,来减少甚至是彻底排除掉生活当中一些有害于人们身体健康以及对生态环境建设有害的物质。通过绿色化学反应技术可以真正实现从源头消除污染体的目的,同时在这一技术的应用中,生产、制造出对于环境有保护效果的原料,同时秉持着可持续发展的原则,不断循环利用这些原料。
3、新的分离技术
分离技术也是化学工程技术在你化学生产中应用的重要体现。从表面意义来说:是指通过分离技术对设备不断进行强化逐渐延生到对生产工艺环节的不断强化,实现能量转化的效率、能源消耗减少、设备变小的目的。这些都是分离技术的重要体现。分离强化技术无论是对社会生产还是可持续发展都有着重要的作用,是化工分离技术发展的重要趋势。最开始的化工分离技术远远没有如今的分离技术完善,其原理主要是通过利用所有物质沸点都不一样的特性,实现将不同物质从分离塔当中分离出来的目的。尽管在科学技术和经济的不断发展下,分离技术越来越多,并被广泛应用到生产、生活当中。但是通过调查研究表明:当今社会发展当中,人们对于分离蒸馏的研究以及刮膜式分子蒸馏器的研究都相对较少,这两种分离技术还没有十分完善,需要人们不断不断去研究、探讨。当然在科学技术以及经济不断发展的作用下,大多数的分离技术都在不断发展、完善,很多分离技术都被广泛运用到了社会生产、生活当中,取得了历史性的成就。在此过程当中,人们也将信息技术运用到了分离技术的开发、研究当中。比如说:在热力学以及传递的性质等方面的研究,都体现了信息技术为表现的分离技术。在热力学的研究当中运用到信息技术,并将信息技术和分离技术相结合,这对于分子的分离效率的提高有着重要的意义。同时也对人们研究、开发出高效地分离剂有着重要的作用。这些都体现了信息技术对于分离技术的发展有着深远意义。
二:传热过程中一些新的研究进展和方向
1、微细尺度传热学研究进展
从广义来说,通过对时间以及空间这两种尺度的不断研究、探讨为出发点来探寻传热学的规律称为细微尺度。在实际应用当中,细微尺度传热学在传热学当中已经自成分支,成为重要的一个环节,受到更多关注。通常情况下连续介质的过程中,即使载体粒子的平均尺寸远远小于物质的特征尺寸,假定还是会成立的。但是当尺度的不断细微化,原本的假定因素还是会随其的细化产生一定的变化,从而造成了传入规律以及流动规律的改变。当今社会,纳米、微米技术被广泛应用在社会生产、生活当中,随着纳米、微米技术的不断成熟,越来越多的人开始关注到了纳米、微米科学的魅力。越来越多的领域也开始以细微尺度传热学为研究方向展开研究。其中,多空介质流动传热、微型热管等研取得的重要成果,都是细微尺度热传学研究成果的重要体现。
2、强化热传过程的研究进展
强化传热过程的研究主要是以改进换热器设备为方向进行延伸的研究,实现不断提升传热效率,让设备不断对外释放热力的目的。这项研究对于新传热材料的研发以及传热生产工艺技术的不断发展有着重要的意义。
3、传热理论研究进展
这些年来,尽管很多传热研究者都长期关注于对滴状冷凝在工业生产过程当中的应用研究,滴状冷凝的研究成果并没有取得很大的进展。最主要的原因还是传热研究者对于如何实现滴状冷凝并且保证冷凝的寿命研究没有实质性的进展。就目前而言,传热研究者在对滴状冷凝研究上主要还是针对于:在工业生产中应用滴状冷凝,通过改变冷凝界面的性质来实现对传热改造的目的。在石油化工生产、机械生产、动力生产以及航天技术等领域,沸腾的传热方式受到了广泛的应用。在很长时间段上,对于液体具有高换热强度机理以及发生核态沸腾原因等方面的研究人们一直坚持着。因为影响沸腾的因素有很多,以及沸腾现象的复杂性、多变性,都决定了人们在沸腾所能传输的热量研究上不能用通常的计量方式来权衡。一直到科学技术发展较为成熟的现今阶段,水沸腾时产生的气泡对于加热器表面有哪些影响的研究都还有很长的路要走。
三:化学工程学科的发展趋势
随着科学技术的不断发展,越来越多的新兴技术以及新能源不断被研发出来,并被人们关注广泛应用到社会生产、生活当中。但是这些在为社会带来便利的同时也提醒着人类,化学工程的研究需要不断进行,同时为新产业的形成与发展提供良好的生产环境并不断形成成熟的理论基础是未来研究者需要面对的主要问题。实践表明要想有效促进化学工程技术的发展,离不开各个领域的研究。万物之间都有着紧密的联系,只有将信息、环境、能源、生物等方面的研究与化学工程研究相结合,不断找出共通点,才能为化学工程技术发展创造新的方向。
四:结论
电气自动化技术作为化学工程技术中的一种被广泛应用于电气工程当中,其不仅对于效地提升设备有效性有着显著的效果,同时还能促进电气工程建设的信息、网络、效率化的建设,为电气工程的有效调动以及数据的及时采集、保存都有着重要的作用。对于帮助电气工程不断满足社会需求,适应社会发展规律都有着重要意义。
参考文献
[1]张杨.浅谈化学工程技术在化学生产中的应用[J].科技创新与应用,2014,08:291.
中图分类号:G6430文献标识码:A文章编号:1674-120X(2016)08-0097-02收稿日期:2015-10-09
随着社会经济的不断发展以及产业结构的调整升级,对高级人才的知识结构、实践应用能力的要求日益提高,培养应用型、复合型、实践性的高级专业人才已成为高等教育的重要使命[1][2][3]。我国从2009年开始加大了全日制专业学位研究生的培养力度。但是,根据现有培养实践来看,我国专业学位研究生的培养还存在着培养模式的同质化,与社会、学校以及研究生个人的需求脱节等问题[4][5][6]。因此,开展新形势下专业学位研究生的综合改革具有重要意义。
一、“四位一体”化学工程专业学位研究生培养的建设思路
化学工程作为一个工科专业,实践性是其显著的特点。中南大学化学工程专业在长期的办学过程中,结合学科平台优势,形成了四个具有鲜明特色的研究方向:资源化学工程、储能化学工程、生物医药工程、环境化学工程,学术效益、社会效益、经济效益明显,培养的人才在行业内广受好评,为专业学位研究生的培养奠定了良好的基础。
围绕专业学位研究生培养教育的要求,中南大学化学化工学院进一步加快了“从以学术型人才培养为主向学术型与应用型人才培养并重转变”,构建了化学工程专业学位研究生“四位一体”的教育模式:以提升学生专业应用实践能力为主体,以课程体系改革、创新导师队伍建设、丰富实践载体以及完善评价和保障机制为着力点,深入开展化学工程专业学位研究生教育综合改革。
二、推进化学工程专业学位研究生课程体系改革
课程体系的设置的基本思路在于突出专业学位研究生培养的实践性。根据国外发达国家专业学位研究生教育的经验,课程学分远远少于学术性研究生教育[7]。因此,中南大学化学工程专业学位研究生的课程体系设置,更加注重减少培养体系中对课程学分的要求,适当地加强实践能力培养、综合能力发展的课程,从而达到我们培养复合型人才的目的。如将专业实践从4个学分提升到10个学分,进一步突出专业实践的重要性。课程体系的设置采用“层次化、模块化”的模式。所谓 “层次化”是指构建从基础专业课程到专业能力发展课程,再到综合能力发展的立体课程体系;“模块化”是指打破现有的课程组成,按照培养人才功能的不同,对现有课程形成模块化的组合。
三、创新化学工程专业学位研究生导师队伍建设
国外发达国家的专业学位研究生导师队伍建设具有以下特点:一是注重多渠道吸引优秀人才进导师队伍,严把入口关。如日本一般专门职业大学院要求有实践经验的教师须占专任教师的30%以上,法科大学院要求20%以上,教职大学院要求40%以上。[8]二是注重导师队伍的考核。如美国高校对导师实行“非升即走”的评估考核制度[9]。三是保证导师队伍的稳定性,加强保障。如德国的法律把教授的身份定位为国家公务员,职务也是终身的,不得任意解聘[10]。
目前,我国专业学位研究生导师队伍建设还处于摸索阶段,中南大学化学化工学院创新化学工程专业学位硕士生导师队伍建设主要体现在以下几方面:
(1)推进制度建设。制订了《中南大学化学工程专业学位研究生导师遴选细则》等制度。一是明确专业学位研究生教育导师队伍建设的重要性和作用,规定专业学位研究生教育导师队伍建设的原则和标准,制订专业学位研究生教育导师队伍建设的方法和措施,积极引导专业学位研究生教育导师队伍朝着正确的方向健康发展。二是厘清专业学位研究生导师与学术性研究生导师职责的异同,明确专业学位研究生校内导师、企业导师的职责,制订相关的制度。
(2)依托科研项目与平台,拓展“双导师”选聘途径。中南大学化学化工学院根据化学工程专业与企业联系紧密、在化工冶金等领域具有一定的行业影响力的特点,依托老师的科研项目与科研平台,聘请企业导师。依托产学研合作选聘导师有两个明显的作用:一是以科研项目和平台为依托,使“双导师”联系更加紧密,避免“双导师”流于形式;二是积极发挥项目的纽带作用,学生既能够在学校接受相关教育,又能到企业受到工程应用实践的锻炼,而且“双导师”能形成良性互补、互动的局面,从而提升学生的培养质量。
(3)以更加开放的姿态,从国外选聘兼职导师。从国外引进既有理论水平又有实践经验的优秀技术开发人才,利用其在国外工作、学习、生活的经历,通过对专业学位研究生的教育教学,使高校在专业学位研究生教育方面能较快获得国际性的最新信息,有利于吸收国外专业学位研究生教育方面的先进教育教学理念,有利于促进我国高校对专业学位研究生的培养。
四、丰富化学工程专业学位研究生实践载体
实践是专业学位研究培养的核心。围绕提升专业学位研究生的实践能力,中南大学化学工程专业通过在课程中模拟实践、在行业中锻炼实践,取得了良好的效果。
(1)在课程学习中注重实践能力的提升。一是“在教学内容中强调理论性与应用性课程的有机结合,突出案例分析和实践研究;教学过程中重视运用团队学习、案例分析、现场研究、模拟训练等方法”,从而提升学生解决问题的能力,培养学生实践意识。二是利用虚拟仿真技术,让学生更加深刻地理解相关工程化学过程。
(2)与行业与企业共建合作,提升实践能力。一是“二维深化”企业、行业合作力度。在横向上,加大企业合作的面;在纵向上,加深与企业合作的深度。除了就专业学位研究生人才培养进行合作外,还将科学研究、社会服务等多元的合作与其融为一体,使人才培养服务于科学研究、社会服务,并在这两者中得到提升。二是探索企业合作的责权划分机制。对于共建基地,对基地的组织体系、双方职责、导师、学生、培养细则、知识产权、经费、学校支持等内容探索确切的规定和解释。三是探索“集中双向”研究生实践机制。“集中”是指依托学校、学院、专业、系,将合作的资源进行集中起来,“双向”是指系里将集中的资源以及培养的专业学位的研究生资源进行双向的公布,让双方进行双向选择,从而达到资源优化配置的目的。
五、完善化学工程专业学位研究生教育的评价及保障体系
(1)探索“四级联动”专业学位研究生教育评价体系。“四级联动”是指建立学校、政府、企业、社会机构“四级”专业学位评价主体体系。现阶段,我国专业学位研究生培养的评价主要方式就是学校自评、政府考核,企业特别是企业导师也有一定的参与度,但是不深入。社会机构参与评价的形式还较少见。但是随着国家评估与评价的宏观政策的变化,比如“管办评”分离,明确地提出了要将第三方机构纳入评价体系中。因此将社会机构也纳入评价体系中。学校是专业学位研究生教育评价的主体,中南大学化学化工学院每两年一次,邀请校内专家为化学工程专业学位培养质量进行评估,每四年一次,邀请校外专家,包括政府教育部门官员、企业代表、其他高校化学工程教授代表、第三方的评估机构进行诊断号脉,从而及时调整办学思路。现已完成第一轮的校内、校外专家评估。
(2)构建“软硬结合”专业学位研究生教育保障体系。一是完善管理体制。建立研究生专业学位建设领导小组,领导小组由学校的教授、企业导师、第三方机构的成员组成;依托教授委员会进行决策,建设领导小组的提议应在教授委员会上通过才能执行;组建专业学位研究生委员会,隶属于学院学生工作委员会,负责指导学生的日常管理、思想政治教育等工作。二是理顺内在体制。建立、完善专业学位的质量保障、监控体系,尝试建立了相关预警机制,探索建立奖助贷体系,现已建立25万元/年的奖助体系。三是营造良好外部环境,取得良好效果。近年来,中南大学化学工程专业学位研究生参与实践率达到100%,就业率达到100%,选修人文素质相关课程达到100%。
近年来,中南大学化学化工学院依托化学工程的优势与特色,围绕实践能力提升这一核心,在课程体系改革、创新导师队伍建设、丰富实践载体以及完善评价和保障机制等四个方面,开展了化学工程专业学位研究生教育的综合改革,具有一定的示范作用以及现实指导意义。
参考文献:
张东海,陈曦研究型大学全日制专业学位研究生培养状况调查研究高等教育研究,2011,(2):87―94.
耿有权,彭维娜,彭志越,等全日制专业学位研究生培养模式运行状况的调查研究现代教育管理,2012,(1):103―108.
甄良,康君,英爽专业学位研究生培养质量评价及保障体系的构建研究生教育,2012,(6):52―55.
朱永东,张振刚,张茂龙全日制专业学位研究生培养的现状调查及分析――基于珠三角地区3所不同类型高校的问卷调查学位与研究生教育,2011,(11):40―44.
秦发兰,陈新忠,汪华,等关于全日制专业学位研究生特色化培养的思考中国高教研究,2012,(4):60―64.
包水梅,顾怀强专业学位研究生教育――跨越式发展背后的尴尬及其化解中国高教研究,2011,(9):45―49.
张建功中美专业学位研究生培养模式比较研究广州:华南理工大学,2011.
化工热力学是化工类学生的专业必修课程之一,主要讲述热力学定律在化学工程领域的应用,包括化工过程中各种形式的能量之间相互转换规律及过程趋衡的极限条件等。它是培养学生分析和解决实际化工问题思维方法的重要专业理论基础课[1-3]。然而该课程的课程内容抽象、计算繁琐,学生感到非常难学又缺乏实际应用,在课程学习过程中学生产生恐惧和厌学心理,达不到良好的教学效果,因此,我们对该课程的教学内容和教学方法进行一些改革和尝试,希望激发学生学习的兴趣,进而更好地掌握这门课程,为后续专业课程的学习夯实基础。武汉大学2013年新开设的能源化学工程专业是由1958年原武汉水利电力学院开办的“电厂化学”专业发展而来,主要面向电力行业及高效洁净能源领域(包括超临界火电、核电、生物质能、氢能、新型化学电源等),培养掌握化学与化工基础理论及能源化学专业知识和技能的未来行业发展的领军人物。目前,本专业主要有水处理、材料腐蚀与防护、化学监督与控制、能源化学四个主要研究方向。为了适应学校对新专业发展和一流学科建设的要求,2015年在本专业大三学生中新增设了《化工热力学》这门化工类专业的专业基础课程。如何调动学生的课堂积极性,培养学生的创新能力,夯实学生的专业基础,使他们在54学时的学习过程中理解并掌握本门课程的基本概念,并且将抽象的理论与实际的能源化学过程联系起来是本课程的核心教学任务。本文结合我校能源化学工程专业的培养目标,浅谈《化工热力学》的教学体会,着重对教学方式进行了探索和实践,为培养能源化学工程领域的领军人物奠定基础。
1明确教学内容与课程主线
结合我校《化工热力学》课程以工程应用为中心、专业研究方向覆盖面广等特点,我们选用了朱自强等编著、化学工业出版社出版的《化工热力学》作为教材[4],同时,也鼓励学生使用部分参考教材(《化工热力学》,冯新等编,2008;《化工热力学(第二版)》,陈钟秀等编,2000;《化工热力学导论(原著第七版)》,J.M.史密斯等编,刘洪来等译,2007)[5-7]。化工热力学发展时间较长,已形成较完整的知识体系,如何在54学时内有效地把关键知识点教授给学生是本课程教学实践的关键。由于本专业学生在大二《物理化学》课程中已经系统学习了理想气体相关的状态方程及其应用,因此在本课程教学中不再赘述,而是重点介绍工程实际应用较多的二参数状态方程、化工热力学分析、溶液热力学、流体相平衡和化学反应平衡等。在教学实践中,首先,详细分析《化工热力学》教材结构,围绕主线内容合理编排知识点;其次,建立好各知识点之间的逻辑关系,让学生在大脑中建立化工热力学框架图;最后,根据能源化学工程专业的需要,适当删减补充了教材内容,结合学科动态,增强化工热力学的应用能力,如燃料电池开路电压的计算、水/二氧化碳共电解制合成气过程中气体组成的计算等。
2改变单一课堂教学模式,培养学生自主学习能力
化工热力学课程设计的公式多而繁杂,学生在开始学习阶段容易产生恐惧厌学心理,传统的单一课堂教学模式具有“教师主导学生学习”的特点,与本课程“教师引导学生学习”的教学目的存在较大偏差。因此,应改变传统单一课堂讲授模式,充分采用“启发式”和“参与式”相结合的教学方法。首先,教师在课前预习阶段设疑(提出问题),促使学生思考,复习旧知识,预习新知识;其次,教师在教学实践过程中采用多媒体和板书相结合的教学方式解疑(解决问题),并通过对例题和习题的讲解加深学生对化工热力学原理、方法和应用的理解,同时,教学过程中应避免陷于抽象的说教和枯燥的公式推导之中,重点讲述化工热力学知识点的应用条件和物理意义;最后,课堂教学结束后,教师主动与学生面对面交流答疑(探讨问题),并设置思考题让学生查阅相关资料。通过“设疑—解疑—答疑”的渐进式教学方法达到对关键知识点举一反三的目的,同时,吸引学生注意力,培养学生自主学习能力,提高学生学习的积极性和主动性。
3课堂教学与工程实践密切结合,培养学生初步的工程观点
化工热力学由于理论性较强、基本概念多且抽象,而且本科生在学习过程中接触科研课题及工程实践的机会较少,将课堂教学内容与科研课题及工程实践紧密结合起来,建立“以应用为中心”、“探究式”的特色教学模式,紧密联系我校在能源化学工程领域(特别是超临界火电、核电、生物质能、氢能、新型化学电源等方面)开发利用的化学工程实际问题,把学科前沿领域的科研成果带入课堂,可以使他们强化科研思想、激发听课兴趣、培养创新能力;同时,可以让学生获取利用化工热力学基本原理解决工程实际问题提供思路和方法,培养学生初步的工程观点。
4考核方式方法研究
传统的期末一张考卷为准的考试方式不利于学生能力的培养,也不能全面地体现学生对所学知识的掌握程度,为了更加系统全面地评价学生对课程内容的认识情况,我们对课程的考核方式方法进行了改革探索。目前,课程成绩总评包括平时成绩和期末成绩两部分,其中平时成绩包括学生的课堂综合表现、课程预习、平时作业三个部分,各占10%;期末考试采用开卷方式考试,考试的题目偏重于对知识点的理解和其在能源化学过程中的应用。然而由于该课程的课程内容抽象、计算繁琐,教学过程中发现仍有部分学生存在畏惧厌学心理,因此,在今后的教学实践中应考虑进一步激发学生的学习兴趣,增强学生的主观能动性,在课堂教学中引入分组讨论,开展导向性的专题研究,将课程内容与能源化学过程(特别是学科动态)相结合,培养学生查阅资料和分工协作的能力,为学生下一步学习专业课程夯实基础。
5结束语
在《化工热力学》课程的教学实践和尝试中,首先要明确教学内容与主线,打破单一的学生被动听讲的模式,理论联系实际应用,调动学生学习的积极性和主动性,激发学生对教学内容的兴趣,并且在教学的过程中对教学方法进行改革创新,因材施教,为学生下一步学习更专业的能源化学工程知识和从事新能源行业工作奠定扎实的基础。
参考文献
[1]陆小华,冯新,吉远辉,等.迎接化工热力学的第二个春天[J].化工高等教育,2008,3:19-21.
[2]梁浩,刘惠茹,王春花.《化工热力学》教学实践与尝试[J].广东化工,2010,37(1):157-158.
[3]李兴扬,唐定兴,沈凤翠,等.化工热力学教学改革与体验[J].化工高等教育,2011,3:71-73.
[4]朱自强,吴有庭.化工热力学(第三版)[M].北京:化学工业出版社,2009.
[5]冯新,宣爱国,周彩荣,等.化工热力学[M].北京:化学工业出版社,2008.
所谓化学工业,主要是通过化学反应或物理操作将自然资源转变为人类所需要的产品的工业类型,在上世纪迅速发展,至今为人类提供了丰富的产品。随着人类对自然资源的逐渐深入利用,化学工业也发生了巨大的变化,个性化、多品种、小批量的专用化学品成为发展的主要方向。随着传统化学工业的饱和,化学工程转向产品,研究向微观层次深入,也专注于专用化学品的研究。
一、化学产品工程的理论体系
1.化学产品工程
随着市场的发展,专用化学品也面临着新的挑战,如产品的设计、功能、投入市场时间、通用设备选择等等。传统的单元操作也转向配方产品生产相关的操作。也足以看出化学产品工程的理论正在朝着以产品导向为开发的方向,寻找适合的方法继续拧产品设计及生产,为其提供理论与技术支持。化学产品工程主要回答的是生产何种产品,或者是该产品如何满足市场、环境及性能等方面内的要求。化学产品工程研究的核心内容是产品的性质与结构之间的关系,要从微观上定量和模拟分析。对产品的质量要进行设计与控制,化学工程师所面临的问题已经远远超出了化学工程领域的挑战。
2.产品设计特征
传统的过程设计主要是根据产品的数量、开发成本、利润及效率等方面进行考虑,实现经济效益这一基本目标,同时兼顾环境、安全等因素。在设计过程中,对分离与反映过程的不同方案进行对比,最终通过对公用工程、设备、材料及产品进行评估,进行经济性评价,过程设计综合了传递过程、热力学及单元操作等技术。与之不同的是,产品工程不但注重过程与单元的效率,更以用户需求作为产品功能的实现目标,注重小规模生产,新产品要快速进入市场,对市场的反应也比较敏捷。引起规模比较小,消耗的资源也比较少。
二、化学产品工程中的关键技术
1.分子产品工程
根据产品的分子机构、性能及加工行为间的规律,设计出市场需要的化学品,是现代化学产品工程的发展趋势。试验固然重要,但是作为产品工程人员要具备分子结构对产品性能产生何种影响的预测能力,从而设计出满足其性质需求的化学产品。在分子产品工程中,对分子结构与性能的关系研究非常重要,分析其关系主要通过计算化学领域的理论与方法以及半经验的分析方法来完成。采用计算机辅助分子设计方法,能够有效的降低产品的开发周期以及能源的消耗,计算机辅助分子设计的目的是为了满足特殊性质要求的分子及分子混合物,是基于大量候选分子中,通过合理的时间筛选出最符合要求的产品,通常通过正反两个方面来完成,首先,建立关系模型,反映出分子节后及分子交互作用和性质间的关系;其次,在关系模型建立的基础上,对分子结构进行优化,使之满足性质要求,这是一个数学规划寻优的问题。在分子产品工程中,分子模拟技术是一项关键的技术,产生于上世纪八十年代,是将模拟计算工具与计算机图形处理技术相结合,对现实世界的化学与物理过程进行分子模拟进行描述,目前该技术已经成为产品设计中的主要方法。该技术通过对分子力学、量子力学、数据库技术、分子动力学、数值算法及三维结构匹配等领域内的研究成果进行综合运用,实现对化合物宏观性能的解释。采用该技术能够直观的了解分子静态结构,还能给出分子宏观性能与结构间的定量结果。尤其是对试验手段很难观察到的物理过程及现象,能够通过分子模拟进行再现。目前,分子模拟研究的领域主要涉及到传递性质、流体流动、化学反应机理、高分子结构、复杂流体、相平衡、临界现象、晶体构造、膜及界面现象等。
2.配方产品工程
目前,化学产品工程更倾向于消费者所需求的产品性能的开发,如颜色、光泽、悬浮液的稳定性、催化剂的性能等方面,化学品市场对具有特殊工艺性质的复合配方的需求越来越多。如化妆品、表面活性剂、药物、洗涤剂、农用化学品等等。为满足其性能,这些产品被设计成结构颗粒固液分散体系、结构化固体、凝胶、溶胶、水溶性聚合体、泡沫纸品等,和基础化学品对比,此类产品的结构非常复杂,性质与质量与分离操作中的纯度和浓度有直接的关系。在配方产品中,分子聚集成的微相区介于宏观和微观之间,称为介观体系。该体系将宏观与微观联系起来,在合成与加工中,介观分离的时间非常短,如果仅仅从试验上进行把握,几乎是不可能的。因此介观模拟技术出现,该技术能够对真实的试验条件进行模拟胶体溶液及聚合物的微观形貌、化学形态、流动性等,对于高分子科学、化学工程及配方化学中涉及到的复杂问题能够很好的进行解决。基于介观尺度,计算机模拟有了飞快的发展,成为现阶段计算化学研究的前沿,目前,相对成熟的模拟方法主要有耗散颗粒动力学及介观动力学,这两种方法都是基于平均场密度泛函理论而存在。在实际应用中,已经成功的用于共聚物相分离、高分子混合增溶剂、逆变胶束、油-水-表面活性剂体系及乳胶种子形成等领域。
化学工业是国民经济重要的支柱产业和基础产业,资源、资金、技术密集,产业关联度高,经济总量大,产品应用范围广,在国民经济中占有十分重要的地位。“十二五”是国民经济发展的重要战略机遇期,也是化学工业发展的关键时期。为适应国内外形势新变化,深入贯彻落实科学发展观,加快转变发展方式,促进石化和化学工业转型升级,提高行业整体质量和效益,增强国际竞争力和可持续发展能力,特编制本规划。规划期为2011-2015年。本规划内容包括石油化工、天然气化工、煤化工、盐化工和生物化工等。
三、结束语
化学产品工程所研究的方向来源于化学工业的新挑战与需求,通过新的理论体系的构建,强力的推动化学工程的发展。其研究主要是以产品为导向来发展的,包含产品的设计、专业技术及知识等,其目的是为了降低产品的开发周期,提高设计水平,提升产品的质量。在研究中,化学产品工程需要解决两个实际问题:产品的物理参数与期望性能指标间的关系;如何将该关系转化为生产技术。也因此,对于优秀的化学工程师来说,化学界的需求非常大,与以往的过程工程师不同,化学工程师需要具备更为丰富的知识背景,此外,市场人员、科学院及工程师之间的配合也非常重要。由此可见,化学产品工程结合了不同领域的研究成果,并以产品为导向发展的知识体系,必然成为化学工程的重要研究方向。
参考文献
[1]李伯耿,罗英武.产品工程学--化学反应工程的新拓展[J].化工进展,2009(4).
所谓大班,一般指“规模过大的班级”或“人数过多的班级”。蒋士会[1]认为,高校大班课堂教学规模应该确定在50~100人之间。吴艳[2]认为大班课堂教学是合班教学,也就是将原有两个或两个以上的行政班级合并在一起进行教学。我国从1997年高考扩招以来,大学生数量逐年增加,而相应的教师数量并没有成比例地增加,导致我国高校生师比从1997年的7.8:1上升至2012年的16.6:1[3],而且有日益攀升的趋势。从全校公共必修课到专业基础课,甚至专业课,大班教学逐渐成为一种普遍现象。
《化学反应工程》属于专业课,我院化学工程与工艺专业在2013―2014学年第二学期3个行政班级(化学工程与工艺11-1班59人、化学工程与工艺11-2班55人、化学工程与工艺专升本13-1班20人,三个班级以下分别简称1班、2班、专升本)共计134人一起上这门课。上课前笔者查阅了有关大班教学的资料[4]-[9],了解到优化大班课堂教学效果的有效措施是提高学生学习积极性、主动性和自觉性。为此上课采用案例法多媒体教学。另外还给学生分了学习小组,每组7~8人,有学习好的有学习差的,组长由有组织能力的人担任。小组活动任务主要是及时复习该课程的重难点,有问题及时与老师沟通。为了考查这些措施的实施情况,笔者在本学期期中编制了“关于化学反应工程大班教学问题的调查问卷”。
1.研究方法
本研究调查不记姓名,学生自愿参与,调查对象是上这门课的三个行政班级的学生,共发放调查问卷134份,回收105份,有效回收率78.4%,符合统计分析的要求。
作者简介:赵凌,女,汉族,河南扶沟人,1980.6,硕士,讲师。主要研究方向:化学工程、化工设备。
通信作者:张艳维,女,汉族,河北河间人,1980.9,硕士,讲师。主要研究方向:化学工艺、精细化工。
本调查问卷共20道题目,涉及各班班风学风问题及大班教学的教学方式、教学手段、课堂表现、教学效果和小组学习等六个方面。
2.调查结果
2.1各班班风学风问题
班风学风问题主要是课堂教学时学生的听课情况。
表1 你上课时会有以下哪些行为?摇 ?摇
学生不听课时玩手机的占大部分,55.77%的同学表示同意上课前关掉手机或把手机主动交给老师。以后上课时老师可以提前提醒学生关机。
2.2教学方式
表2 大班上课,老师采取的教学方式是?摇 ?摇
目前学生接受新知识的主要途径仍然是讲授,期间可以多种教学手段相结合,增强大班教学效果。
2.3教学手段
教学手段是师生教学相互传递信息的工具、媒体或设备,本次调查的是多媒体、板书。
表3 大班上课,你喜欢哪种教学手段?摇 ?摇
“其他”选项中同学们的意见是要求课件与课本同步,便于课下自己复习。
2.4课堂表现
表4 你是否迟到或早退??摇 ?摇
表5 上课对老师提问的问题,你的态度是?摇 ?摇
“其他”选项,有的认为有把握的回答,没把握的听别人回答;有的人思考但没有结果;有的跟不上老师的思路,不知从何答起。
表6 上课遇到自己解决不了或没有听懂的问题,你的措施:?摇 ?摇
“其他”选项有的表示记下来问同学或上网查;有的只是记下来,下次课前再看,看不懂就不管了;有的表示对该课程兴趣不大,考研跨专业,无所谓。
2.5教学效果
表7 与之前参与的小班教学相比,你认为此次大班教学效果怎样,为什么?
78.22%的同学认为小班教学效果好,因为小班上课秩序好,干扰因素少,受周围影响小,注意力比较集中,可以认真保持听课状态;人少,看得清,听得也清。小班上课,老师可以注意到更多同学,方便与老师交流,不会的当场问老师,当场就可以解决,而大班人多,部分同学坐得靠后,自制力不好,不能专心学习,还影响别人,效率不高,一般大班上课的教室比较大,喜欢往后坐,影响听课质量。0.99%的同学认为人多交流起来方便,所以认为大班教学效果好。20.79%的同学认为学习是自己的事,老师讲课只是辅助作用,愿意学习的在任何情况下都会好好学习,不愿意学习的即使一对一辅导作用也不大。
2.6小组学习情况
表8 你参与小组学习的感受是?摇 ?摇
18.45%的同学认为小组学习效果不好主要是自主学习能力差,学习积极性不高。26.21%的同学认为小组学习效果很好,能调动学习积极性,提高自学能力和团队意识。52.43%的同学认为没有真正融入小组团队中,没有发挥出自己的特长,对小组学习方法还不太适应。
3.现存问题分析及思考
目前,大班教学是现有条件下高校教学的主要组织形式,并且较长一段时间内不会出现大的改变。大班教学中由于班级人数多,不容易进行课堂组织管理,学生课堂教学参与度低,课堂气氛沉闷,课堂教学枯燥乏味,学生学习效率和教师教学效率都会受到影响。
本文通过问卷调查和深度访谈相结合、定性和定量相结合评价教学效果。在此基础上进行理论反思和批判,找出影响大班教学的因素,寻找适合本课程的教学方法、课程控制方法等控制策略。根据大班课程教学特点,提出一些可行建议和意见。
首先,大班课堂教学可以采用授课形式以集体授课为基础,合作学习小组活动为主体的教学方法。具体学习过程中要注意调动学习小组组长的主观能动性,发挥表率带头作用。其次,教师应努力提高课堂教学艺术,注意运用课堂控制技巧和幽默的语言,使用多媒体等辅助设备,激发学生学习热情,提高学生学习积极性。这样才能把《化学反应工程》大班课堂教学上得有声有色,收到良好的效果。
参考文献:
[1]蒋士会.试论高校大班课堂教学的优化[J].大学教育科学,2004,(1):27-30.
[2]吴艳.大班课堂教学的现状调查与思考[J].安庆师范学院学报(社会科学版),2009,28(9):111-114.
[3]中国统计年鉴[EB/OL].
[4]陈国峰.浅谈大班额环境下课堂教学小组合作学习的有效性[J].2013,(4):74-75.
[5]李玉侠,王秀芹.试论高校大班课堂教学控制的积极策略[J].衡水学院学报,2008,10(5):103-105.
[6]吴威.高校大班额课堂教学中所出现的问题及应对策略[J].教书育人・高教论坛,2011,(6):84-85.
[7]郭锐.高校大班课堂教学准备的策略研究[J].科技创新导报,2011,(33):163.
长江师范学院经过多年的发展,在师资队伍建设、人才培养、科研创新平台建设等多方面取得了长足进步。在本次申硕工程中,我校拟申报的材料与化工专业硕士学位点是立足重庆,面向全国,以国家新材料发展战略和区域绿色产业发展需求为导向,以实际工程为背景,以工程技术应用为主线,培养出德智体全面发展、具有一定创新能力的应用型、复合型高层次工程技术和工程管理人才。
拟申报的专业学位点以国家新材料发展战略和区域绿色产业发展需求为导向,围绕国内外在新材料开发技术与化工工程技术领域存在的科学问题,开展有特色的工程应用研究,拟在高分子材料化工新技术、能源与功能材料、环境污染治理与低品位资源开发利用等新材料与化工工程领域形成突出优势,在特种功能材料与新能源材料的制备技术和污水处理技术上形成专业特色。
经过多年发展,材料与化工专业学位点的主要研究方向:材料化工新技术、能源化工新技术、环境化工与低品位资源开发利用。