发布时间:2023-10-08 10:05:02
导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的5篇城市轨道通信技术范例,将为您的写作提供有力的支持和灵感!
随着近年来电子与通信学科的迅猛发展,城市轨道交通信号通信技术出现了革命性的变化,过去以轨道电路为代表的单向通信方式,已经被双向通信技术所取代,现阶段我国新建的地铁项目中,采用基于无线通信的列车控制系统(CBTC)技术的项目越来越多,CBTC技术提高了车地通信效率,但是由于技术标准较新,而且信号系统是关系到列车安全的重要系统,为此,本文对现阶段的城市轨道交通无信通信技术进行了比较。
城市轨道交通通信系统主要承担着CBTC信号系统,PIS(乘客信息系统)以及车载监控系统的传输任务。从传输的数据量上看,CBTC约为数百Kbps,PIS为下行10Mbps级,而车载监控业务为上行Mbps级。从移动速度上看,速度较快的地铁,最高时速在80Km左右,现阶段的无线通信技术已经能够达到上述要求。目前城市轨道交通通信技术中可以实现的技术主要有WiMAX、WLAN,GSM-R三种技术等,下面比较下这几种通信技术。
1 简介
1.1 WiMAX
WiMAX又称为IEEE 802.16无线城域网,全名为微波存取全球互通(Worldwide Interoperability for Microwave Access),该标准是工作于2~66GHz无线频带的空中接口规范。它所规定的无线系统覆盖范围可高达50km。802.16标准系列到目前为止包括802.16、802.16a、802.16c、802.16d、802.16e、802.16f和802.16g7个标准。最初,802.16标准的目标只局限在固定无线接入的范围内,因此在城轨通信等快速移动领域无法使用该技术,但是随着802.16e的提出,WiMAX技术有了很大的突破,已经涉足到移动领域,随着标准的成熟和网络的演进,该项技术逐步可以实现120km/h的移动速率。从而目前来看,WiMAX设备由于专利主要在一家公司,形成垄断,设备价格非常昂贵。从该产品成熟度的角度出发,其技术标准还不成熟,不适合作为城市轨道交通通信技术。
1.2 WLAN
WLAN(无线局域网WirelessLAN),目前WLAN所包含的协议标准有:IEEE802.11b协议、IEEE802.11a协议、IEEE802.11g协议、IEEE802.11E协议、IEEE802.11i协议、IEEE802.11n协议、无线应用协议(WAP)。WLAN技术传输速度较快,802.11n协议的设备已经可以实现百兆级别,同时其支持的移动速度较快,能够实现80KM/H以上的行车速度,由于应用广泛,设备价格普遍较为便宜,非常适合长距离大规模铺设,因此,此项技术在城轨通号领域得到了广泛应用。但是在已经建成的地铁项目中,仍存在着诸多问题。目前WLAN主要工作在2.4G频段附近,为ISM频段,不需授权即可使用。地铁在穿越人口密集的繁华区段时,微波炉,医疗设备,乘客的手持wifi设备等容易产生电磁干扰。西安地铁2号线在CBTC联调初期最大的问题就是个别站附近的电磁干扰非常严重,干扰的存在会使系统的整体性能有非常明显的下降,在有些时候甚至会失去工作的能力。因此,现阶段该技术的最大问题是如何降低干扰因素对车地通信产生的影响。
1.3 GSM-R
GSM-R(GSM Railway)系统是专门为铁路通信设计的综合专用数字移动通信系统,是基于GSMPhase2+的规范协议的高级语音呼叫功能的基础上,加入了基于位置寻址和功能寻址等功能,适用于铁路通信特别是铁路专用调度通信的需要。主要提供无线列调、编组调车通信、区段养护维修作业通信、应急通信、隧道通信等语音通信功能,可为列车自动控制与检测信息提供数据传输通道,并可提供列车自动寻址和旅客服务。GSM-R能够支持的最高移动速度可达500KM/H,由于技术成熟,其安全性较好。如引入EDGE技术数据通信速率最高可至115Kbit/s,目前由于数据传输速度较低,无法实现PIS和列车监控等大容量数据业务。
2 市场现状对比
在目前的城市轨道交通信号设备中,基本趋向于使用WLAN技术作为主要通信方式,在北京、上海、广州、西安等城市的地铁项目中都是使用WLAN进行CBTC和PIS系统的设计和调试,其主要的出发点是其技术的成熟性和可靠性。WiMAX作为一种和WLAN相近的技术,两者的原理和核心技术基本一种。而且频道基本相近,但WLAN的2.4G频段属于ISM的非管制频段。针对WLAN和WiMAX主要担心的是安全问题和干扰问题。WLAN通过对IEEE802.11i的支持,WiMAX通过对IEEE802.16e的支持,很大程度上改善了安全的问题。在抗干扰能力方面,两者频谱的管理是不一致的,一个属于管制频点,另外一个属于非管制频点,干扰源略有不同。而GSM-R系统,其系统经过国铁的建设实践,已经非常成熟,但只能够满足于无线列车调度,车-地数据通信等低速数据业务的应用。
3 技术指标对比
WLAN,WiMAX,GSM-R的主要技术参数分别从以下几个方面对比:工作频段分别为2.4G/5.8G,2.5G/3.5G,800M/900M;WLAN的802.11n协议最大带宽100Mbps,WiMAX的802.16e最大带宽70Mbps,GSM-R为115Kbps;WLAN和WiMAX为全业务,GSM-R则只能提供列车控制;接入距离上分别为500米,15千米,10千米;应用情况上看,只有WLAN在多地市地铁项目均有使用,而WiMAX和GSM-R尚未使用,但是GSM-R在中国和欧洲的大铁项目有使用;安全性和抗干扰能力上GSM-R较高,WLAN和WiMAX较为一般;只有WLAN的2.4G频段不需要申请;系统造价WLAN较低,WiMAX和GSM-R较高。
1城轨交通车地无线通信现状
城市轨道交通控制是基于CBTC实现的列车自动化控制系统,通过实时监控列车运行状态,控制列车安全行驶。因此,车地无线通信就决定了CBTC运行的稳定性与可靠性。当前地铁车地无线通信网络的实现,主要是采用是基于IEEE802.11标准的WLAN技术,主要存在以下问题:
(1)系统稳定性低
WLAN无线网络单站点AP覆盖范围有限,最多不超过200米,所设站址较多,从而造成隧道内维护困难,在高速移动情况下无法保障数据传输的质量。
(2)抗干扰能力弱
地铁WLAN无线通信没有专用频段,只能使用免费开放的2.4GHz和5.0GHz公共频段,干扰源太多,干扰太大,也许一个普通手机用户的手机热点都可能对WLAN的传输质量产生影响
(3)数据传输带宽受限
随着城轨信息化的发展,无线通信领域对数据传输带宽提出了新的要求。车内旅客信息系统(PIS)要求车地通信能够提供单车6~8Mbit/s的下行传输带宽,CCTV监控系统要求能够为单车提供4~6Mbit/s的上行传输带宽。在保证CBTC列车控制信息正常传输的基础上,满足上述PIS、CCTV业务数据的传输,对现有的WLAN通信系统提出了新的要求。
(4)数据传输安全性低
由于WLAN采用公共电磁波作为载体进行数据传输,任何人都有条件和可能窃听或干扰信息,存在电磁波泄露或者数据被截听的安全隐患。因此,对于WLAN的安全保密问题显得尤为突出。
(5)组网成本高
城轨车地专用无线通信业务主要分为三部分:以TETRA为代表的语音调度业务;保障CBTC系统运行的WI-FI网络;车载PIS(乘客信息系统)与CCTV(闭路电视)的专用WI-FI网络。这三种业务彼此独立,各自单独组建网络,所建成本较高,不利于轨道交通业务的长期发展。
2移动通信技术
(1)第一代移动通信技术
第一代移动通信技术产生与上世纪80年代,是最初的模拟蜂窝网络标准,称为FDMA(频分多址)技术。第一代移动通信技术的一大成就就在于用户第一次能够在移动的状态下拨打电话,但是它们只能提供基本的语音会话业务,不能提供非语音业务,并且容量有限、制式太多、互不兼容、保密性差、通话质量不高、不能提供数据业务和漫游业务等,上世纪90年代就基本被淘汰了。
(2)第二代移动通信技术
也称为2G通信技术,是为解决第一代移动通信四分五裂的局面而提出来的数字蜂窝网络技术,其数字无线标准有:GSM和CDMAIS-95。第二代移动通信系统在引入数字无线电技术以后,数字蜂窝移动通信系统提供了更好的网络技术,不仅改善了语音通话质量,提高了保密性,防止了并机盗打,而且也为移动用户提供了无缝的国际漫游。
(3)第三代移动通信技术
第三代移动通信技术简称3G,它是一种真正意义上的宽带移动多媒体通信系统,它能提供高质量的宽带多媒体综合业务,并且实现了全球无缝覆盖,它的数据传输速率高达2Mbit/s,其通信容量是第二代移动通信技术的2-5倍。目前,最具代表性的3G标准有有美国提出的CDMA2000,欧洲和日本提出的WCDMA以及中国提出的TD-SCDMA。
(4)第四代移动通信技术
第四代移动通信同样被称为4G技术,它是3G技术的进一步演化,是基于LTE标准(长期演进技术)之上,为我们提供高速移动的网络带宽业务,它的最高无线传输速度可达每秒100Mbps。4G是集3G与WLAN于一体,并能够快速传输数据、高质量、音频、视频和图像,并且能够满足几乎所有用户对于无线服务的要求,有着不可比拟的优越性。
3移动通信技术在城轨交通车地通信中应用的优势
(1)多种网络覆盖方案,提高系统稳定性
移动通信站点是通过基站进行无线网络覆盖,单个分布在隧道的基站覆盖范围可达1.2km。另外,基站的组网设置原则比较灵活,依据列车的运行速度设置基站的安装位置,增大或者减少基站网络覆盖的重叠长度,可保证高速环境下成功的进行越区切换,提高数据传输的稳定性。
(2)使用专用频段,无线网络抗干扰能力强
移动通信技术采用的是专用频段,不同于WLAN的公共频段,其干扰源少,抗干扰能力强,保证了数据传输的可靠性。
(3)蜂窝网络技术,数据传输容量大
移动通信技术也称为蜂窝网络通信,通过设置基站,划分小区,成百上千倍地增大了频率的空间复用率,极大提高了数据传输量。另外,LTE技术的应用,为第四代移动通信技无线宽带业务提供了技术基础,使得无线传输速度可达100Mbps/S。
(4)多种数据加密方式,数据安全性高
移动通信的鉴权中心主要有两个功能:一是对用户的IMSI号进行鉴权,防止非本网络用户接入网络;二是为无线路径上的通信数据进行加密,保证了通信数据的安全性。
(5)网络功能强大,降低组网成本
移动通信网络具有多种业务功能,除了基本语音通信业务之外,也可实现高速传输数据、音频、视频和图像等大数据量业务。因此可完全替代TETRA集群通信和WLAN网络,实现语音调度业务,保障CBTC系统运行和车载PIS与CCTV的专用车地通信无线网络,避免单独建网,降低组网成本。
4结语
无线通信系统是城市轨道交通车地通信的命脉,它直接影响着城轨控制系统的稳定性与可靠性。基于移动通信系统技术的优势以及良好的发展形式,移动通信车地通信系统的优越性也值得我们去关注和研究,为城轨交通业务的发展需求提供强大的技术支持。
参考文献:
[1]李春.城市轨道交通车地宽带移动通信技术选择分析[J].城市轨道交通研究,2009(6):73-74.
[2]甘玉玺.轨道交通车地无线通信技术研讨[J].城市轨道交通研究,2014(1):103-106.
引言
现代城市交通建设中,轨道交通建设是尤为重要的内容,这是因为轨道交通具有用地省、运能大、运行时间稳定的特点,对促进城市发展、交通发展都具有重要的意义。但是轨道交通在建设过程中也具有一定的局限性,比如城市轨道交通的地下空间较为狭小、紧张,所以不利于各类通信电缆的敷设。而通信系统对轨道交通建设而言尤为重要,其直接关系到轨道交通的运行和安全。基于此,就需要根据城市轨道交通的特点和需求,加强对通信系统建设方面的研究。无线通信技术是利用电磁波信号进行信息传播、交换的一种通信方式,其传播不受通信电缆敷设的限制,所以可以解决城市轨道交通通信系统建设的问题。而分析现代城市轨道交通无线通信技术与应用也显得十分重要。
1现代城市轨道交通对通信系统的要求
现代城市轨道交通堵通信系统的要求较高,其不仅要满足轨道交通的安全稳定运行需求,同时还需要满足乘客对通信的多样化需求。所以现代城市轨道交通通信系统必须要达到相应的要求,比如无线网络系统的覆盖面要更广,要实现全覆盖;车载通信系统单元要与控制基站相联系并授权,以此确保系统信息的交流稳定性;基本的通信要保障信息的及时性和双向信息通信的稳定性等[1]。另外,城市轨道交通通信系统中还需要包括PIS系统,以此来为乘客提供媒体服务,如视频播放、广播广告等。基于此,在城市轨道交通建设中,如图1所示,加强对通信系统的建设就显得十分重要。
2现代城市轨道交通无线通信技术与应用措施
2.1Zigbee技术及应用措施
Zigbee技术也成为紫峰协议,是基于IEEE802.15.4标准的一种无线通信技术,其具有短距离、低功耗、低数据速率、自组织的特点,目前在各种工业现场的遥测遥控领域中都有着广泛的应用,且发挥着重要的作用。Zigbee在室内可以达到30~50m的作用距离,如在室外空旷地带,其作用距离可以达到400m[2]。基于Zigbee技术低功耗、低成本、低速率、远距离的特点,也可以加强其在城市轨道交通无线通信系统中的应用。城市轨道交通备用系统电池状态的监测对地铁供电系统的运行起到了至关重要的作用,但是地铁备电系统电池组数量较多,如果每个电池采用专用电缆的方式进行通信,则会造成较大的成本,而通过应用Zigbee技术就可以有效解决这些问题。在具体应用过程中,可以在每个被检测电池组及测量端子处安装Zigbee终端模块,通过自组网方案,以一定数量的终端模块作为群组,向中继Zigbee传输检测数据,最终将传输的监测数据上传至检测系统微机管理系统中,就可以对备电系统电池状态进行有效监测,进而为地铁供电系统的可靠运行提供保障。
2.2WiFi技术及应用措施
目前在生活生产中,WiFi技术都属于一种非常常见的无线通信技术,其在通信方面具有较高的灵活性和可靠性,可以满足人们多样化的通信需求。作为一种高效可靠的无线通信技术,其也可以在城市轨道交通无线通信系统中发挥作用和价值。但是在WiFi技术应用于城市轨道交通无线通信系统实践中也发现了一些问题,WiFi技术与列车移动电视、信号系统CBTC、PIDS乘客信息系统的同在2.5GHz频段,所以会产生一定的干扰。对此,就需要在WiFi技术应用过程中采取一定的措施来保证无线通信质量和效率。比如在WiFi技术应用过程中,为了保证城市轨道交通通信的稳定性和可靠性,可以将WiFi频段固定在5.8GHz,这对于减少干扰问题具有重要的作用[3]。在WiFi技术应用过程中,也可以应用PIDS和CBTC系统,这对于提高WiFi技术的整体应用可靠性也具有重要的作用。但是如果应用PIDS和CBTC系统,则需要对轨道交通系统进行较大的改造,所以这需要根据轨道交通系统的建设需求和现状慎重实施。为了更好地避免干扰问题,也可以对WiFi技术进行创新和完善,比如可以将WiFi与地铁的信号系统设置在不同的信道当中,以此来起到避免干扰的效果。
2.35G通信技术及应用措施
引言
随着我国经济的快速发展,城市化进程在不断加快,城市面临的人口压力也在与日俱增,给城市交通带来了很大的压力。经过多年的实践和总结,在城市中进行轨道交通项目的建设,可以有效缓解这一问题。通过城市轨道交通的发展,人们的出行变的更加便利,而且节省了城市的土地资源。当前,在城市轨道交通中,轻轨和地铁是两种主要的组成部分,其对节能能源和缓解交通压力带来了不可磨灭的贡献。而通信技术在城市轨道交通安全、稳定运营中发挥了重要作用,基于此,文章对相关的内容进行了探讨。
1 城市轨道交通中通信系统的设计概述
1.1 城市轨道交通中通信系统的组成部分
轨道交通的通信系统,承载着运营管理中的语音、数据、图像和文字等各种信息,为确保行车安全、提高运输效率和现代化管理水平、提升旅客舒适度以及突况下提供应急处理手段等方面,提供重要的通信保障。而且在城市轨道交通的通信系统的各个子系统来说,需要能够对各自系统内部的故障具有检测和报警功能,以保证系统的稳定运行。
一般情况下,城市轨道交通的通信系统主要由传输系统、专用电话子系统、公务电话子系统、时钟子系统、视频监控子系统、专用无线子系统、乘客导乘子系统和公安/消防子系统等组成。而在这些子系统中,传输系统是最为关键的部分,其为其他的业务子系统提供了传输的通道。正是由于传输系统的核心地位,其稳定性与其他业务子系统的业务能否正常运行有着非常直接的关系。因此,在对城市轨道交通通信系统的设计中,要尤其注重对传输系统的设计。
1.2 城市轨道交通中通信系统的设计原则
在对城市轨道交通的通信系统进行设计时,要保证其可以为运营相关人员和系统设备等提供可靠的信息交互手段,以保证轨道交通系统可以安全、可靠地将乘客送往目的地。因此,对于通信系统来说,要满足以下的设计原则。第一,满足可靠性原则,将各个子系统的隐患进行消除,或者将因为接口匹配而产生的故障进行消除;第二,满足先进性的原则,通信系统的技术应该是当前应用成熟的技术,而且预留了升级的条件;第三,满足扩展性和易维护性的原则。通信系统应该可以方便扩展,为今后后续线路的扩展提供条件,而且通信系统的维护应该比较方便。
2 城市轨道交通中通信技术的具体应用
2.1 传输系统框架设计
城市轨道交通通信系统主要由传输系统、专用电话子系统、公务电话子系统、时钟子系统、视频监控子系统、专用无线子系统、乘客导乘子系统和公安/消防子系统等组成。具体的传输框架如下所示:(1)传输系统。传输系统是整个城市轨道交通通信的核心,因此,需要采用通信技术建立起点对点或者点对面的传输通道,综合数个传输通道建立起城市轨道间的通信连接,只有这样才能有效发挥城市轨道交通中的通信效用。(2)专用电话子系统。通过专用电话子系统可以建立其轨道交通车站和控制中心的语音调度通信功能。控制中心的各类调度台可以很直接地向各个车站发起相应的调度指令。(3)公务电话子系统。公务电话系统各个车站的模拟和数字电话业务通过远端模块连接到控制中心的中心交换机上进行交换后实现公务电话互通,同时中心交换机通过与市话中继连接,实现公务电话的外线业务。(4)时钟系统。对于时钟系统来说,控制中心存在着一级母钟,而各个车站存在着二级母钟。控制中心的一级母钟可以对各个车站的二级母钟实现同步,然后在对各个子系统提供相应的时钟同步信号。各车站的二级母钟对车站中的各个位置的子钟进行同步,供乘客正确掌握时间信息。(5)视频监控子系统。在轨道交通通信系统的视频监控子系统中,可以在控制中心、车站之间形成二级控制网络,而且通过控制中心的视频监控系统控制键盘可以对轨道交通车站内的某路监控视频发起调用命令,从而将该路图像输送到相关的显示器上显示。
2.2 SDH技术的应用
传输系统是整个城市轨道通信系统的核心所在,在对其设计上,不仅要考虑到城市轨道交通的安全、稳定性,还要对未来通信系统的发展方向进行把控,同时要适应城市轨道交通通信业务的复杂性、多样性。基于该种原因,采用综合业务接入和IPover SDH是当前最好的选择。
SDH具有突出成熟、可靠、标准、通用以及可用性等突出特性,不过其在点对多点或者多点对点的传输以及图像信号的传输不理想。因此,在使用中可以结合IP技术的应用对其缺点进行弥补,同时,SDH技术的应用也反过来弥补了IP技术的不足。基于该种因素考虑,IPover SDH将是最佳的选择。SDH网络单元是SDH传输网络的主要组成部分,在光纤、微波或卫星上进行同步信息传送,融复接、传输、交换功能于一体,由统一网络管理操作的综合信息网。其可以有效实现对网络的动态维护和管理,从而有效提升网络资源的利用效率,而且也能有效满足城市轨道交通的信息数据传输要求。
2.3 IPover SDH的具体实现
IPover SDH在城市轨道交通中的应用具有多种优势,在每个车站和停车场作为信息采集节点,通过以太网接入以及PCM设备接入方式将本站点的信息通过SDH传输通道送到控制中心和其他中心,在控制中心将采用统一的网管来管理整个网络是目前最佳的选择。不过,对于轨道交通通信系统传输业务来说,许多都可以通过IP进行解决,但是针对其中一些实时性强的业务,而对这些事实性强业务的接入选择综合业务接入将是最好的选择。
对于综合业务的接入来说,采用的传输通道为标准的2M通道,而且采用PCM30/32制式,可以直接为数据、语音等提供多样化的接口。而且综合业务的组网灵活,可以方便地对链路、环形和点对点的网络结构进行组成。而且综合业务接入具有64K交叉能力,沿途上下电路无阻塞,在沿线可根据用户需要自由上下电路。同时,设计了冗余的双电源对系统进行供电,具有更有利的安全系统。系统采用模块化设计理念,具有较高的可靠性,后期扩容方便,不需要太多的投资。
3 结束语
综上所述,城市轨道交通的快速发展为缓解城市交通压力,提高城市土地利用率发挥巨大作用,而通信技术的应用则又为城市轨道交通的安全、稳定运营提供了重要的保障。在文章中,对城市轨道交通中应用的通信技术组成及详细实现进行了分析,作者认为,未来中,在城市轨道交通的通信系统中要积极采用新的通信技术,以进一步提升城市轨道交通的运营管理水平,从而为广大城市人民的出行提供更好的保障,助力我国城市建设的飞速发展。
参考文献
[1]马璐通.浅谈信息通信技术在城市轨道交通系统中的应用[J].品牌(下半月),2015,4:174+176.
[2]聂淼.浅谈现代城市轨道交通无线通信技术与应用[J].通讯世界,2015,10:12-14.
[3]邵景俊.通信技术在区域轨道交通中的应用[J].中小企业管理与科技(中旬刊),2015,6:181.
【中图分类号】TN921 【文献标识码】A 【文章编号】1672-5158(2013)01―0172-02
1 前言
伴随着我国科技与经济的不断发展与进步,我国地铁行业也在不断发展改进,其中通信技术承担着提高地铁运营效率、保障行车安全的重要任务。那么,地铁无线通信系统应该确保高通信质量和全线场强全覆盖。同时,通过高清晰数字视频通信,使各级行车指挥调度对列车车载电话、车厢内电视图像以及行驶列车对前方车站客流情况进行实时监视。列车无线通信所提供的车地之间的数据传输通道必须兼备高数据容量号快速移动性能。
2 无线通信标准及其应用
目前,国内地铁行业使用的无线通信技术主要有以下几种。
2.1 TETRA技术
TETRA数字集群通信系统是欧洲电信标准协会(ETSI)制订的唯一支持数字集群专用移动通信的开放标准,可以在同一平台上提供指挥调度、数据传输及电话服务,并具有公开、开放的优点,其功能特点:①提供必要的带宽,无需通过用户接口即可同时发送或接收话音和数据;②支持数字图形、图像传输、电子邮件等多种数据通信;③动态分配带宽,一个通信链路最多容纳4个时隙;④每个时隙的通信能力为7.2k bit/s,总体传输速率可达28.8kbit/s;⑤在一个物理信道机内可容纳4个时分信道,可在不同的时隙内接收和发送数据,频谱利用率高;⑥具有话音和数据加密功能,支持开放式信道信令。即允许来自不同厂商的产品进入同一个公共通信信道。
2.2 3G技术
第三代移动通信(3G)能够在20 MHz频谱带宽提供下行100Mbit/s、上行50 Mbit/s的峰值传输速率;改善小区边缘用户的性能;提高小区容量;降低系统延迟,用户平面内部单向传输时延低于5 ms,控制平面从睡眠状态到激活状态迁移时间低于50 ms,从驻留状态到激活状态的迁移时间小于100 ms;支持100 km半径的小区覆盖;能够为3 50 km/h高速移动用户提供大于100 kbit/s的接入服务;支持成对或非成对频谱,并可灵活配置1.25 20 MHz多种带宽。
2.3 WLAN技术
无线局域网(WLAN)的主要标准是IEEE802.11,具体包括IEEE802.11b、802.11a和802.11g等。802.11b通常也被称为wi-Fi(WirelessFidelity),工作在2.4GHz频段,可支持最高11Mbit/s的共享接入速率;802.11a工作在5.8GHz频段,其速率高达54Mbit/s,分频采用OFDM(正交频分复用)技术,但最高速率的无障碍接入距离降到30-50m;802.11g也采用OFDM技术,与802.11a一样可支持最高54Mbit/s的速率,同时它工作在2.4GHz频段,因此,可以做到与802.11b兼容,而最高速率是802.11b的5倍。
2.4 WiMAX技术
WiMAx是建立在IEEE 802.16和ETSI HiperMAN无线城域网标准基础上,支持点对点或点对多点的网络结构,可选择在需执照频段或免执照的频谱中操作。它可为固定站提供达50 km的宽带无线接入,可为移动站提供5-15 km的宽带无线接入。但WiMAx核心网络的标准至今仍在制定和完善中,空中接口标准也存在信令开销大的问题,由于目前尚未通过中国通信标准委员会审定,未被频率分配,技术开展缓慢。
2.5 DVB-T技术
数字视频地面广播(DVB-T)是DVB一系列标准中的一个标准,用于地面开路数字电视系统,采用国际标准的MPEG-2编码,COFDM(编码正交频分复用)调制方式。在地铁列车运行过程中连续不断地接收到由泄漏电缆或地面发射基站发射的实时信号,通过数字机顶盒进行解码,并转换为模拟复合视频和音频信号,再经过视音频分配器输出到终端显示屏上。DVB-T具有容量大、接入方便等特点,其技术使用于下行高速数据的传输,可以工作在多个频点,减少无线频段干扰。
2.6 Mesh技术
无线Mesh网络所需设备小巧轻便,易于安装。由于其路由选择特性使得链路中断,所以局部扩容和升级不会影响整个网络的运行。在Mesh网络中,数据通过中间节点进行多跳转发,每一跳至少都会带来一些延迟,随着无线Mesh网络规模的扩大,跳接越多,积累的总延迟就会越大,一些对通信延迟要求高的应用(如话音或流媒体应用等),可能面临无法接受的延迟过长的问题。目前,解决这一问题主要是增加Mesh节点以及合适的网络协议。尽管在有线网络中使用的各种端到端安全技术(如虚拟专用网VPN)同样可以用来解决无线Mesh的安全问题,但正如Internet一样,安全是选择无线Mesh网络不容忽视的问题。
2.7 TRainCom
TRainCom无线电系统是一种适用于各种数据服务和运用的列车无线电系统。与现行的其他列车无线电系统相比,该系统能提供更多的带宽。全双工模式下总数据传输速率高达16 Mbit/s(取决于无线通信系统的架构)。由于系统结构和构造可升级,无线通信系统几乎适用于所有列车系统――轻轨车、高速列车和高速磁悬浮列车。TRainCom是一套交钥匙系统。而且,符合列车市场要求的CCTV和VoIP模块也可有多种应用。
3 无线组网
地铁无线信号覆盖主要是站厅、站台以及隧道区间。站厅及站台区域多呈长条形,且站厅支柱及其他障碍物较多,为此,站厅层和站台层多采用天线覆盖。隧道区间无线信号的覆盖是关键,隧道区间中无线组网的方式主要有裂缝波导、漏泄电缆和无线电台等。
3.1 裂缝波导
裂缝波导网主要由中空铝质矩形管(WG)、无线接入设备(TRE)、波导管连接器(TGC)、双面连接法兰(DFL)、末端负载等组成。波导信息网移动站由车载计算机、车载无线电台、数据采集卡、窄缝探测接收器等组成。信号传输是通过中心控制室、车站计算机、车载计算机、车载电台和列车上的定向天线发射和接收信号,轨旁单元通过同轴电缆与裂缝波导连接,以裂缝波导为载体双向传输列车实时信息。
3.2 漏泄电缆
漏泄电缆系统的基本结构通常采用基站与漏缆中继方式。全线通常设1个控制中心,1个或若干个基站,1个无线移动交换机,基站信道数根据用户数及话务量大小灵活配置,动态分配。调度员发出的信息经控制中心及无线移动交换机传至基站,基站各无线信道发射机通过合路器、光电转换器、光分路器与光缆相接,基站发出的信息通过光缆传送至各车站中继器,由中继器将信号放大后馈送至全线漏泄同轴电缆辐射出去,使列车司机、车站值班员、手持台持有者能很好地收到来自控制中心的信息。反过来,列车司机、车站值班员、手持台持有者发出的信息由漏泄同轴电缆接收后传送至中继器,中继器将信号放大后经光电转换设备、光合路器与光缆相连,通过光缆将信息传送至基站,再由基站经控制中心及无线移动交换机传至控制中心。需要说明的是,有时无线覆盖是直接由基站将电信号传至漏泄同轴电缆等终端设备进行无线信号覆盖的,不需要经过具备光电转换功能的中继设备,这主要取决于无线场强覆盖的范围和距离。
3.3 无线电台
无线电台组网方式是指利用1根光缆将每两站一区间上下行隧道组成一个封闭的光环网,通过以太网与车站无线网络交换机及隧道接入点(AP)连接。控制中心发出的信息经骨干网传输到车站子系统,再从车站交换机发送到隧道区间交换机,由隧道区间交换机把信息下发到连接到该交换机的所有AP上,最后通过AP与地铁列车相互通信。
4 应用方案
到目前为止,地铁行业无论是在通信系统的无线引入、PIS的无线布网还是信号系统的无线组网以及使用的标准方面并没有形成一套成熟的系统。各种不同的无线引入、组网方式和标准都在试验中。
4.1 建议在车站的站厅层和站台层分别加装手机信号接入设备,直接与控制中心连接;在车厢内同样加装手机信号接入设备,通过和乘客资讯系统(PIS)或信号系统使用同一个无线通信信道传输到车站。控制中心与运营商连接,这样一来就可以减少商用通信系统的引入设备,大大地减少了干扰源特别是区间隧道内的干扰。
4.2 无线标准的选择
地铁在追求性能的同时更应该注重的是稳定和成熟。目前能够满足802.11a标准系列的产品比较少,布置密度大,TRainCom无线电系统则属于私有的技术,不具备开放性,对其二次开发、升级与维护等均需要依赖技术持有方;其他的无线标准不是传输的带宽小,无法满足地铁的功能需求,就是技术标准还不够成熟。目前国内绝大多数城市地铁都是采用WLAN技术。
其中,城轨信号CBTC系统和乘客资讯系统(PIS)都使用同一个WLAN无线标准,802.11g无线标准只有3个互不干扰的信道,由于信号系统是保证列车的行车安全,必须保证其带宽,所以,一般信号系统分配2个信道,PIS系统占1个信道。
虽然PIS系统只使用1个信道,但是实践证明基本上能够满足地铁功能的需求。西门子(SIEMENS)在北京地铁10号线测试PIS系统中无线传输系统的带宽,其中信号系统也是使用802.11g标准,并且由于其重要性占用了1和11信道。这样PIS系统只能使用其中的6信道,经过测试在移动的状态下有15M bit/s,静止的状态下可达到20 Mbit/s。