你好,欢迎访问云杂志! 关于我们 企业资质 权益保障 投稿策略
咨询热线:400-838-9661
当前位置: 首页 精选范文 农产品溯源管理

农产品溯源管理范文

发布时间:2023-10-08 17:38:48

导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的13篇农产品溯源管理范例,将为您的写作提供有力的支持和灵感!

农产品溯源管理

篇1

中图分类号:S126;TP319 文献标识码:A 文章编号:0439-8114(2016)18-4814-05

DOI:10.14088/ki.issn0439-8114.2016.18.047

食品安全问题日益引起人们的广泛关注,欧盟、国际标准化组织和美国、日本、澳大利亚等相继了有关食品安全可追溯性的法规和标准,英国、美国、荷兰等率先建成了牲畜养殖和畜产品质量安全追溯系统。中国虽然起步较晚,但随着《中华人民共和国农产品质量安全法》、《农产品质量安全追溯操作规程》、《我国农产品质量快速溯源过程中电子标签应用指南》等一系列法规、标准的逐渐,国内的农产品质量安全追溯系统建设也在经历了试点、示范阶段之后逐渐进入应用、发展阶段。

从设备、技术、建设过程和应用管理诸方面来看,农产品质量安全追溯系统具有一定的复杂性。从尽量压缩系统规模、降低实现难度和节约建设成本的角度出发,实际的系统设计都不追求“大而全”,而以“精简、够用”为原则:它们或针对某类农产品[1,2],或采用单一编码标识方法[3,4],或设计为单一网络架构[5,6],或支持单一查询方式[7,8]。近年来,由于中国国民经济的发展、技术水平的提高和用户需求的更新,建设适用范围更广、使用更加灵活方便的农产品质量安全追溯系统已成新的目标。在此环境条件下,本研究借鉴已有成果,以农产品供应链模式为基础,综合应用当前主流技术和方法,研究了农产品质量安全追溯系统的混合模式――包括混合编码与标识、混合网络架构和混合查询模式。

1 农产品供应链模式分析

不同地区、不同种类农产品供应链模式的差异,决定了追溯系统结构、溯源指标体系及其编码标识方法的不尽相同。以川东北地区为代表,调查、分析了多类农产品的生产和流通过程,其主要供应链模式如下:

Ⅰ.生产主导模式。生产者完成生产、粗加工和包装,通过物流直送到销售终端(或出口),主要适用于果蔬和水产品。该模式没有中间环节,溯源信息仅包括“生产+销售+物流”三部分内容;

Ⅱ.批发主导模式。粗加工并包装后的农产品经由批发中心(包括产地批发中心、销地批发中心等)配送到销售终端,适用于各类种植和养殖农产品。该模式流通环节增多,其间通常更换包装,发生质量安全问题的风险增大,相应的溯源信息包括“生产+批发+销售+物流”等更多内容;

Ⅲ.加工主导模式。加工者从生产者获取农产品原料进行深加工,产品通过批发中心或直接配送到销售终端(或出口),主要适用于粮油、茶叶、水产和畜禽类动物产品。该模式下农产品经过严格的检测并有完整的包装,质量安全较有保障,溯源信息则包括“生产+加工+批发+销售+物流”等内容[9]。

农产品供应链模式如图1所示。其中,①、④为农产品供应链的基本环节,前者为生产基地或农业合作社,后者包括超市、农贸市场和食堂、饭店等。环节①、④构成模式Ⅰ,加入环节③即成模式Ⅱ,再纳入环节②则为模式Ⅲ。

2 农产品质量安全溯源信息的混合标识与编码

2.1 溯源指标的确定

农产品供应链由多个环节构成,每个环节都会产生大量信息,不可能将其全部录入追溯系统。因此,必须依据HACCP(Hazard analysis and critical control point,危害分析与关键控制点)、ChinaGAP(Good agricultural practices,良好农业规范)、GMP(Good manufacturing practice,良好加工操作规范)体系和其他相关标准、法规,对农产品供应链中各环节的关键信息进行筛选,形成一个合理有效的农产品质量安全溯源指标体系。

溯源指标体系应包括两部分内容:①用于追溯农产品的来源、目前位置和去向的过程溯源指标;②反映农产品安全相关信息的安全溯源指标。

以供应链模式Ⅰ的果蔬产品为例,筛选出各环节的溯源指标如下:

1)生产环节。对于主流的“公司+基地+农户”生产模式,其过程溯源指标包括公司、基地、农户、农田编号及责任人、种子来源、播种日期、采收日期、产品去向等,安全溯源指标则包括化肥和农药的名称、残留量等。

2)批发环节。对于各级农产品批发中心,过程溯源指标应为批发中心、供货单位、进货日期及数量、批销单位、批销日期及数量、批销去向等,安全溯源指标则有检验检疫结果、暂存温度、湿度等。

3)销售环节。对于各类销售终端,其过程溯源指标应有供货单位、进货日期及数量、销售单位、上架日期、销售日期及数量等,安全溯源指标则包括库存地点、温度和湿度等。

4)物流环节。对于贯穿于整个农产品供应链的各物流环节,其过程溯源指标包括物流企业、运输工具、货品数量及装箱规格、发货方与收货方、运输时间、路线、责任人等,安全溯源指标则有运输温度、湿度等。

2.2 溯源信息的混合标识方案

目前主流的信息标识技术为RFID(Radio frequency identification,射频识别)和二维条码。射频识别利用无线电波对记录媒体进行自动读写,其优点为存储容量大、封装样式多、读取距离远、能同时识别多个标签、可用于灰尘、油污、雨水等恶劣环境;二维条码利用特定几何图形按照一定规则在平面上分布条、空相间的图形来记录信息,具有信息容量大、抗干扰能力强、纠错效果好、对网络数据库的依赖性低等优点。其中,QR Code(Quick Response Code,快速响应矩阵码)能够超高速、全方位识读并有效表示汉字,因而在国内得到广泛应用。

基于对农产品供应链各环节的环境条件和系统建设成本的综合考虑,溯源信息可采用RFID与QR Code混合标识方案,具体包括3种:

Ⅰ.畜禽、水产等农产品,因价值相对较高,且其供应链各环节所处环境“恶劣”,故宜采用RFID标识技术。相比之下,粮食、果蔬类农产品则价值较低、各环节所处环境较好,可选择成本更低的QR Code标识方法。

Ⅱ.在同类农产品供应链的不同环节,其所处环境和操作条件也有差异,因此应选用不同的标识方法。如畜禽产品在屠宰、批发和物流环节通常需要更换包装,且环境相对“恶劣”,宜于采用RFID标签;而养殖和销售环节则环境相对稳定,操作也较方便,可以换用QR Code标签。

Ⅲ.在批发和物流环节,大包装(如集装箱)使用RFID 标签,小包装(袋、包、盒等)粘贴QR Code标签。系统读取QR Code标签后自动链接到对应RFID所关联的产品信息,因此无需在数据库中存储大量的小包装产品信息,这样既能节约标签使用成本,又可减少服务器存储空间的开销[10]。

2.3 溯源信息的混合编码技术

将农产品供应链各环节的关键溯源指标信息按规则编码,即得农产品质量安全追溯码。编码规则既应遵从国际、国内标准,也要适应选定的标识方法,因此根据EPC编码规范、采用混合编码技术来实现RFID和QR Code标签中溯源信息的编码。

2.3.1 EPC 256 Ⅲ编码结构 EPC(Electronic product code,产品电子编码)编码体系是全球统一标识系统EAN.UCC的延续和扩展,能实现单个物理对象的全球惟一标识,应用广泛的主要为64位、96位和256位3类。其中,EPC 256 Ⅲ编码结构宜于用作农产品质量安全追溯码结构,其由标头(版本号)和3个信息码段组成,如表1所示。

2.3.2 溯源信息的编码设计

1)EPC管理者码段用32位数字标识农产品供应链中各节点企业代码,这是实现追溯的关键,如表2所示。

2)对象分类码段用14位数字标识农产品的种类、名称和产地代码,如表3所示。

其中,农产品的类别、分组和名称根据GB 2763-2014编码;产地编码由县级以上行政区划代码(6位)和乡镇代码(3位)组成,分别采用GB/T 2260-2013、GB/T 10114-2003的代码体系。

3)序列号码段用16位数字标识农产品的生产档案号、采收批次及其在供应链各环节的批次流水号,如表4所示。

其中,生产档案由产品备案号(3位)和生产批次号(3位)组成,前者的第1位为大类标识、后2位为流水号,后者的前2位为年份、后1位为年度批次;采收批次为生产环节的批次号;批次流水则依次由加工、批发和销售环节的批次号组成。

2.4 混合标识与编码技术的应用

以混合标识方案Ⅱ为例,首先在生产环节直接使用QR Code标签记录编码,其中包括EPC管理者码段的生产者代码、对象分类码段的全部编码和序列号码段的生产档案、采收批次代码;进入加工环节后,利用RFID中间件系统将QR Code标签内容与本环节的关键信息转换写入RFID标签的信息区域,添加的内容包括EPC管理者码段的加工者代码和序列号码段的批次流水代码;在批发环节仅需向RFID标签的EPC管理者码段和序列号码段分别加入批发中心、供货商代码和批次流水代码;在最后的销售环节,再将RFID标签内容、该环节的关键信息和溯源信息数据库中的部分内容转换输出为QR Code标签,以便消费者的追溯查询操作。

3 农产品质量安全追溯系统的混合网络架构

3.1 系统的功能结构及主要运行流程

1)溯源信息管理中心。是整个系统的核心,共享数据库中存储着农产品供应链各环节的溯源指标信息和政府监管部门(农业、质监等)、检验检疫部门提供的相关信息,实现整个系统的信息录入、分析与输出,并负责系统用户及其权限的管理。

2)生产经营单位管理子系统。既可作为本单位的管理信息系统独立运行,又能在登录系统后获得相应的溯源信息数据库访问权限,从而实现农产品供应链各环节的溯源指标信息录入与修改。

3)追溯信息查询子系统。允许消费者通过溯源网站、自助终端、手机短信和客服电话等多种途径进行农产品信息的追溯查询,并开展对外宣传、在线召回问题产品、受理消费者对问题产品的举报和投诉等服务[11]。

系统的功能结构及其运行流程如图2所示。

3.2 系统的混合网络架构

3.2.1 常用的两种网络模式 目前的管理信息系统以B/S(浏览器/服务器)网络模式为主流,它是由数据层、服务层和应用层组成的三层结构,其客户端通过浏览器访问Web服务器及其与之相连的数据库服务器。B/S模式系统的客户端只需安装浏览器,应用软件和后台程序都在服务器端运行,采用HTTP协议实现双方的信息传输,扩展及升级非常方便,但较多用户同时访问系统会导致响应速度变慢。

另一种常用的C/S(客户机/服务器)网络模式则为两层结构,其用户界面和业务处理在客户端进行,数据管理维护在服务器端完成。C/S模式系统的运算响应速度快,但应用软件和数据库管理系统分装在客户端和服务器端,故而系统的升级、维护较为困难。

3.2.2 农产品质量安全追溯系统的混合架构 由于两种网络模式各有优劣,农产品质量安全追溯系统宜于采用C/S模式与B/S模式的混合架构。具体方案为:①供应链中各节点企业的管理子系统采用C/S结构,以便高效地进行企业内部业务管理和溯源信息的输入;②溯源信息查询、公众信息等子系统的业务处理较简单,不会明显增加服务器的运行压力,采用B/S结构可以简化客户端的操作,并降低系统的维护成本;③系统以B/S结构为整体框架,通过VPN(Virtual private network,虚拟专用网络)或XML数据交换技术将C/S结构的局域网接入,实现Internet环境下的信息交互。这种混合架构将两种网络模式的优点集于一体,在响应速度、数据安全、系统维护等方面取得了较好的平衡,如图3所示。

4 农产品质量安全追溯信息的混合查询模式

4.1 追溯信息查询的流程

根据条码标签查询农产品质量安全溯源信息的流程如图4所示。

4.2 追溯信息的混合查询模式

随着Internet的发展、移动网络的提速和智能手机的普及,农产品质量安全追溯系统提供的溯源信息查询方式也应与之相适应,主要包括:①PC网站查询。在连接到Internet的任何计算机上访问农产品质量安全追溯系统网站,消费者即可酥所购农产品的溯源信息;②自助终端查询。在批发中心、超市、农贸市场等场所,消费者可通过操作专用终端方便地查询农产品的溯源信息;③扫描QR Code标签查询。消费者使用智能手机扫描QR Code标签,可自动打开农产品质量安全追溯系统网站,或直接解码获得所购农产品的溯源信息;④客服电话或手机短信查询。消费者可使用任何手机,在任意时间、地点进行溯源信息查询。

在农产品质量安全追溯系统中将这些查询方式结合起来构成混合查询模式,既充分运用了现代科技发展的主流成果,也为消费者方便、灵活地进行溯源信息查询提供了更多的手段支持,如图5所示。

5 结语

农产品作为食品的主要原料,其质量安全问题早已引起世界各国的高度重视,具体体现为相关法规、标准的大量出台和各种农产品质量安全追溯系统的立项建设。在这种有利环境下,本研究基于国内主流的农产品供应链及相应质量安全追溯系统的全面分析,依托计算机网络技术、物联网技术和二维条码技术的最新进展,从溯源信息的编码及其标识、系统网络架构和追溯信息查询等方面研究了农产品质量安全追溯系统的混合模式,为相关的研究和开发工作提供一种参考思路。

参考文献:

[1] 冯恩东,钱卫红,张红生.南京蔬菜质量安全监管追溯系统设计与应用[J].江苏农业科学,2013,41(5):283-285.

[2] 申艳光,马高庭,蒋万春.肉鸡产品质量控制与追溯系统的设计[J].湖北农业科学,2015,54(4):974-978.

[3] 林宇洪,胡连珍,蒋新华,等.基于二维码的农超对接供应链追溯系统的设计[J].黑龙江八一农垦大学学报,2015,27(6):83-87.

[4] 袁晓萍.基于RFID的水产品追溯系统的研究与实现[D].山东青岛:中国海洋大学,2011.

[5] 迟琳芯,苏 微,赖庆辉.基于Web的大米质量安全追溯系统的设计与实现[J].安徽农业科学,2016,44(5):302-304.

[6] 吴 倩,林佳丽,李 臻,等.基于物联网的海产品质量追溯系统设计与实现[J].农业网络信息,2015(12):39-43.

[7] 董玉德,丁保勇,张国伟,等.基于农产品供应链的质量安全可追溯系统[J].农业工程学报,2016,32(1):280-285.

[8] 李健林.粮食质量安全溯源关键技术研究[D].长沙:中南林业科技大学,2013.

篇2

中图分类号S5 文献标识码A 文章编号 1674-6708(2011)47-0044-02

1项目背景

近来食品安全事件频频曝光,食品安全问题再次成为舆论关注焦点。由于农产品处于最上游的链条,它的安全问题更应该引起我们足够的重视。运用信息化手段建立信息记录规范、流向跟踪精准、应急反应迅速的农产品质量追溯网络监管体系,既是信息化社会发展的需要,也是农产品质量追溯体系自身建设的需要。

重庆市标准化研究院承担了由中国标准化研究院申请的国家863项目《农产品质量快速溯源系统设计与运行规范研究及技术实现》的子课题《重庆市农产品质量快速溯源系统的综合应用示范研究》,现就农产品质量快速溯源系统的设计思想与大家进行探讨。

2系统建设原则

农产品溯源系统总体结构的设计从体系、功能、数据采集、数据上传与下发、过程等各个方面保证整个系统目标的实现,建立企业标准体系及标准管理的有效机制,对内实现部门间企业相关标准资源的管理,对外实现本地(或远程)方式访问标准资源。农产品溯源系统总体结构的设计应考虑以下设计原则:

1)先进性和实用性原则

计算机技术、现代管理技术和系统技术有机融合而成的信息技术是传统信息的技术革新,因而在设计中应首先采用信息服务技术和成熟的网络,以保证整体系统的先进性,使整个工程立足于高起点。但同时应考虑到产品溯源服务是一项创新的,未有成熟案例可参考的信息化工程。因此设计中应将先进性和实用性很好地结合起来,既具有先进性,又能满足用户对产品溯源的实际需求。

2)集成性原则

集成是保证系统信息一致性,功能整体性的核心,就系统的总体结构而言,它体现在物理集成、信息集成、功能集成和过程集成等方面,因此系统设计,充分考虑与现有系统、资源的集成。

3)安全性原则

设置科学合理的权限管理体系,方便访问权限设置,防止非授权用户对系统的访问、操作。

4)统一规划,分步实施

在“统一规划、统一标准”的前提下,并行开发企业端模块、中心端,查询端模块,由一个企业点的某几个产品开始,从点及面,逐步展开。对于产品信息的追溯,提供多种方式:网站、超市查询机、短消息、邮件等。

3 系统设计目标

农产品溯源系统是一个综合性信息管理工程。根据现阶段的实际情况和需求,在充分考虑目前计算机信息技术现状和发展趋势的前提下,结合阶段化建设的思路,决定整个系统首先应该实现如下目标:

1)采用一维条码技术,验证农产品的真伪,即具有产品防伪功能,对跟踪的产品添加溯源条码(主要针对附加价值高的产品);

2)查询产品资料,根据溯源码,可以获取产品的名称、规格以及其他的提供的详细资料,如:各工序的质检员、生产者、生产日期等;

3)灵活的采集定制:对农产品从生产到销售出厂各环节在追溯系统中的信息采集环节进行灵活的定义;

4)方便的数据采集,在企业端,可以根据采集定义,方便地进行数据采集,范围,时机,频率等采集执行条件灵活方便,并能够进行数据比对(与标准数据)、数据审核等功能,并预留格式报表打印接口。在溯源数据中心端,同样地有一个数据采集模块,可以方便的从企业溯源库中采集数据到中心溯源库;

5)溯源码管理与打印;

6)溯源系统基本上是3部分独立,每一部分可以独立运行;

7)提供多种数据访问模式:超市终端机和公网网站是两种模式访问,用户通过商品溯源码应能追溯到该产品在生产过程中的生产数据,并与生产标准进行对比。后期可提供短消息、邮件等方式进行数据的访问、交互;

8)建立安全可靠的数据库体系;具有高效的信息采集、分析、整理、数据备份和恢复功能;逐步建立集中起完整的农产品溯源数据中心。

4 非功能性需求

4.1 性能要求

系统必须能长期稳定运行,尤其是在运行一定时期后累积大量数据后仍然需要保证优越的性能。

4.2 界面和易用性要求

1)系统界面友好,具有必要的操作提示功能和输入校验功能;

2)超市区域平台要求输入设备只能为条码扫描仪和触摸屏输入;

3)要有广告位置等。

4.3 开放性要求

供应商应提供开放的应用接口,可以方便地与其他厂家的应用系统进行数据交换,便于系统未来的扩展。供应商应提交技术文档,详细说明其软件系统与其他厂家的应用系统进行数据交换的方式及应用接口的使用说明。

5 结论

《农产品质量快速溯源系统设计与运行规范研究及技术实现》项目已经于2009年顺利通过国家科技部的验收,由重庆市标准化研究院自主开发的重庆市农产品质量快速溯源系统在涪陵榨菜集团得到了应用,并得到了有关专家的肯定。

参考文献

[1]金海水,刘俊华.农产品质量快速溯源系统的现状、问题及对策.制度建设,2009(25).

[2]郑力翔.农产品质量全程追踪与溯源技术研究及应用.中国集体经济,2011(2).

[2]张瑶,金海水,刘俊华.农产品质量的同质化与快速溯源系统[J].消费导刊,2010(1).

[3]金海水,张瑶.我国农产品质量快速溯源系统研究[J].中国流通经济,2010(2).

[4]徐翔,宋一鸣,李艳梅,谢静霞.建立食用农产品溯源机制的途径探析[J].现代经济探讨,2009(10).

[5]顾黄辉,黄颂禹,谢燕萍.农产品质量安全溯源机制建设的探索[J].农业环境与发展,2007(4).

篇3

[14] RFID世界网. 二维码应用于新疆阿克苏林果业溯源[EB/OL].(2011-12-09)[2013-07-15]. .

[15] 中国广播网. 兵团阿拉尔市实施生猪肉食品质量追本溯源体系[EB/OL].(2012-05-03)[2013-7-15]. .

[16] 新疆农业信息网. 新疆蜂产品质量安全信息管理系统溯源点建设工作稳步推进[EB/OL].(2012-08-24)[2013-07-15]. .

[17] 中国农业信息网. 乌鲁木齐农产品质量安全预警信息平台建成[EB/OL].(2012-12-12)[2013-07-15]. http://.cn/jjpd/ncpzlaq/201212/t20121212_783433.htm.

[18] 中国畜牧兽医信息网. 新疆牛肉质量安全溯源项目启动[EB/OL].(2013-03-08)[2013-07-15]. http://.cn/NewsDetails.aspx Id=50536.

[19] 房瑞景, 陈雨生, 周静. 国外食品安全溯源信息监管体系及经验借鉴[J]. 农业经济, 2012 (9): 6-8.

[20] 田金琴, 丁红胜. 无公害枸杞果产品质量溯源系统的设计[J]. 安徽农业科学, 2011, 39(20): 12 590-12 592.

[21] 张欣露, 王成, 吴勇, 等. 集成传感器电子标签在农产品溯源体系中的应用[J]. 农业机械学报, 2009, 40(1): 129-133.

篇4

[2]百度百科,http:///item/%E4%BA%8C%E7%BB%B4%E7%A0%81#ref_[1]_132241[EB/OL].

[3]陈蕾蕾,祝清俊,王未名,等.中国农产品安全问题的现状与对策[J].农产品加工,2010(3):58-59,64.

[4]邢文英.美国的农产品质量安全可追溯制度[J].世界农业,2006(4):39-41.

[5]戚亚梅,李祥洲,郭林宇.国外农产品安全管理信息体系建设及运用研究[J].世界农业,2009(5):10-13.

[6]杨信廷,钱建平,孙传恒,等.蔬菜安全生产管理及质量追溯系统设计与实现[J].农业工程学报,2008,24(3):162-166.

[7]杨信廷,孙传恒,钱建平,等.基于流程编码的水产养殖产品质量追溯系统的构建与实现[J].农业工程学报,2008, 24(2):159-164.

[8]维基百科,https:///wiki/QR%E7%A2%BC [EB/OL].

[9]黄海龙,蒋平安,张霞,等.基于Web的农产品追溯系统的设计与开发[J].新疆农业科学,2010,47(9):1832-1836.

[10]张亚科.农产品质量安全追溯系统设计与实现[D].西北农林科技大学,2011.

[11]王宇.基于QR码的食品溯源系统设计与实现[D].西安电子科技大学,2013.

[12]刘晓敏.基于二维码和RFID个体标识技术的农产品溯源系统的设计与实现[D].西安电子科技大学,2013.

[13]冉彦中,曹婧华,张智刚,等.二维条码在商品猪溯源系统中的应用设计[J].物流技术,2013,32(23):402-404.

[14]白红武,孙爱东,陈军,等.基于物联网的农产品质量安全溯源系统[J].江苏农业学报,2013,29(2):415-420.

[15]施连敏,郭翠珍,盖之华,等.基于二维码的绿色食品溯源系统的设计与实现[J].制造业自动化,2013(16):144-146.

篇5

高压之下,行业内遍布高挂的“安全”大旗,充斥着“绿色”“无公害”“有机”等口号。

可溯源概念的引进

各地的农产品基地作为市面上食品素材的提供者,是整个食品安全把控的重要一环。为此,各大农产品基地都在强调食品安全的重要性,加强安全生产。一些大型农产品基地,还建立了系统性的安全监管体系。

这其中,“可溯源”无疑是目前最为流行普遍、最受欢迎的热词。

所谓“可溯源”,就是对“农田到餐桌”整个食品供应链的每一件食品的生产、加工、包装、运输、销售环节进行全面的跟踪、记录,并且可以利用这些跟踪记录的信息回溯到每一件食品在整个食品供应链中所处的具置、具体状况,这样的一种能力叫作食品可溯源。

显然,通过这个体系,在发现危害人类健康安全问题时,可按照从原料上市至成品最终消费过程中各个环节所必须记载的信息,追踪流向,召回未消费的食品,撤销上市许可,切断源头,消除危害,减少损失。

目前,在国家范围内建立农产品质量安全可追溯体系已成为一种发展趋势,通过建立农产品质量安全可追溯体系,以加强农产品质量安全控制的格局正在逐步形成。

出现的问题

作为食品安全领域的一道技术性防火墙,可溯源体系对塑造企业良好形象、赢得消费者的信赖,保证食品安全具有重要意义。然而,就目前来看,这一体系的建设,还存在着一些不可忽视的瑕疵和问题。

此前有媒体调查发现,各地食品溯源体系标准不一,企业自建的食品溯源平台缺乏监管,衍生出借助溯源码鱼目混珠、以次充好的乱象。有的食品张冠李戴,乱贴追溯码;部分原产地品牌的溯源码,变成了企业的牟利工具。更有甚者,企业提供追溯码的定制服务,200万个起定制,标价每个0.02~0.08元,产地等追溯信息却完全由定制方自行掌握。

如此这般,各地的农产品基地、农产品市场大力推广的“可溯源”,在多数时候沦为一种摆设,甚至在利益驱动下成为任人玩捏的橡皮泥。

业内专家、山东亿隆之家农业科技有限公司总经理张化兴在谈到这个问题的时候,不无遗憾地向笔者表示,虽然我国从2014年开始大力推广这项工程,但就目前国内的情况来看,可追溯系统还停留在一个较低的层面,仍局限在“商家到消费者”这个简单的链条上,并未真正实现“从菜园子到消费者”全链条无死角的可追溯,农产品在田地里播种、种植以及水质、空气等重要指标实际上基本上无据可查。因此可以说,种种原因之下,目前的农产品可追溯体系建设,还有很长的路要走。

可溯源有了新突破

尽管我国农产品可溯源严格上来说仍旧停留在初级阶段,但是这一体系本身具有的优越性使其成为未来农产品消费市场的发展趋势,顺应了加强食品安全生产、安全销售、安全流通的客观要求。所谓“民以食为天、食以安为先”,加强农产品可溯源体系的建设,依然是一项各大农产品基地应当常抓不懈的工作。

实际上,经过不断的探索和实践,目前已经有一批优秀企业在农产品可溯源体系建设上取得了实质性的突破。山东亿隆之家农业科技有限公司就实现了可溯源体系“从菜园到餐桌”全环节的覆盖。

篇6

中图分类号:TP391.4 文献标识码:A 文章编号:2095-1302(2016)11-00-04

0 引 言

“食品质量安全可追溯信息系统”最初是20世纪90年代末欧盟为了解决“疯牛病”问题,逐步由政府提出建立并完善的食品安全管理制度。以GMP(“良好作业规范”)和SSOP(“卫生标准操作程序”)为根本,食品链相关组织(包括生产,加工,包装,运输,销售公司和组织)将国际食品法典委员会CAC颁布的“HACCP体系及其应用准则”(食品安全控制体系)作为组织的核心管理要素,明确了以消费者为中心的食品安全管理体制。

对食品生产、加工、物流、仓储、销售等环节建立信息管理制度,实现向上追溯和向下跟踪的“双向”管理,并在超市类似ATM机系统的专门硬件上进行信息共享,保护消费者的知情权。如果出现食品质量问题,即可通过扫描食品标签上的追溯码在网上查询该食品的生产、加工、销售等信息,从而明确相应法律责任的事故方。

食品安全追溯信息管理可通过食品溯源专用硬件设备,在食品流通、供应、消费、库存等各环节中进行信息收集、信息记录以及信息交换等操作,方便市场中的生产者、销售者以及消费者进行快速、有效的沟通。这种食品安全和食品行业自律行为,在市场经济发展中极其重要。

1 农产品质量安全追溯的必要性

20世纪90年代至今,互联网高度发展,大大提高了社会的交流与发展。但同时,食品安全问题屡屡出现,早些年的“三鹿事件”让公众对民族品牌出现信任危机,“地沟油事件”又引起了公众对餐饮业的斥责与不安……如何向公众确保食品安全不仅受到广大消费者的关注,还引起了生产者和销售者的注意,目前已成为我国食品安全发展的焦点问题。

农产品具有的信任特性决定了农产品可追溯系统实施的必要性。信任产品特性是指消费者在消费后,没有能力了解农产品相关的生产信息和物流信息,如使用农药剂量,物流仓储信息等。农产品质量安全信息也属于信任品,然而在实际生活中,由于食品信息被生产商和经销商掌控,消费者并不知道,因此也从根本上造成了两者信息的不对称,导致“信任危机”出现的可能性较大。

建立农产品食品安全追溯系统保障了消费者的知情权,消除了消费者对生产商及经销商的“信任危机”,同时在系统的监督下建立企业间的优胜劣汰机制对于市场经济的发展具有相当大的促进作用。

2 农产品质量安全追溯系统实现关键技术

近年来,物联网技术迅速发展,射频识别(RFID)技术、传感器技术、认识计算和智能控制技术、纳米技术、网络融合技术等关键技术的研发与推广,为追溯系统提供了强大的技术支撑。

2.1 具有农产品商品特征的追溯码编码

在国际上,EAN・UCC系统被广泛应用于商品的追溯码编码和条码表示中,将商品名称、产地、价格、规格等信息进行处理并储存在编码中。EAN・UCC系统是由国际物品编码协会(EAN International)和美国统一代码委员会(UAA)共同建立的全球统一商品标识系统。消费者可以在销售终端通过POS自动销售系统查看食品链在生产、加工、运输、仓储等各环节的信息。

农产品不同于一般商品的地方在于,它具有地域性、鲜活性、种类性等特点,因此设计农产品商品追溯编码时要将农产品的产地、种类、等级、生产日期作为特征编码考虑进去。

国内现有的追溯码编码系统存在很多不足,比如编码长度不够短、数据加密性不强、实时追溯信息不畅等。而杨信廷等科研学者提出在设计农产品追溯码时采用26数字加密信息,并将位置码、产品码、生产日期码、认证类型码、多重校验码相结合,食品一旦发生安全问题可实时追溯至出问题的生产环节。将追溯码编码与Google Earth地图相结合,在可视化图形结合方面创新发展,这对于解决目前追溯码编码问题有很好的借鉴意义。

2.2 农产品商品利用有机RFID标签追溯

追溯码的信息载体是产品标识,那么标识技术又有哪些不同呢?目前,市场上有两种主流的追溯码――二维条码和射频识别技术(RFID)[1]。

2.2.1 二维条码技术

二维条码技术通过对信息进行编码、印刷、光传感等操作,将食品质量信息及数据加密转化存储于二维条形码标签上,建立了规范的食品安全管理体制。扫码可将二维条码附带的数据提取出来,并进一步转化成追溯所需的信息。条码存储信息上条码呈现高密度、大容量、支持数据加密技术等特点,在编码范围上有很大的发展空间。此外,由于条码本身的符号形状可变,可大大提高其适用性。但条形码只能用人力在可见的小范围内使用扫描器进行近距离特定方向的读取,无法保证在短时间内获取大量信息。目前农产品市场使用的二维条码需要消费者通过扫描才能知道该产品来自于哪个企业,而消费者却无法得知农产品具体的产地、用药、施肥等生产信息。

2.2.2 射频识别技术

射频识别技术(RFID)[2]兴起于20世纪90年代,这是一种非接触式自动识别技术,利用射频信号的空间传输特性实现对物体的自动识别并提取相关信息[3]。该技术具有多个标识,可以在任意方向远距离识别标签附带的信息,重复利用性好,防尘、防水、耐腐蚀性强。RFID标签通过对农产品的产地、种类、规格、生产日期、所在位置等信息数据进行加密编程[4],以保证消费者对农产品的知情权。

RFID系统由RFID标签、RFID阅读器及应用支持软件三部分组成。RFID标签[5]由芯片和天线组成,芯片部分通过复杂的IC工艺在硅片上制备出来。每一个标签具有唯一的电子编码。

无机RFID标签的高昂成本一直制约着该标签的大规模应用[6](RFID标签的成本大约为每枚0.2美元以上)。有机RFID标签则采用印刷电子技术,将IC电路通过机薄膜晶体管制备(DTFT)在低廉的塑料基底上。用金属和有机墨水在塑料基底上形成芯片和天线。

在实际操作中,在被标识物体上附有有机RFID标签,当被标识物体进入阅读区或工作区时,阅读器会以远距离非接触的方式自动识别有机RFID标签编码的信息,从而实现对物品的自动化识别,大大减少了人工操作,提高了工作效率。有机RFID标签具有低成本、简化制作流程等特点,可以制成随意粘贴的柔性薄电子标签。

有机RFID标签的工作原理、读取速度、读取距离等和无机 RFID 特点一致,其区别在于两者的材料和加工工艺不同。在世界范围内,好多公司都看好有机RFID市场,纷纷加大对其的研究投入,并取得了实质性进展。2005年、2006年,PolyIC、Philips先后宣布他们已经通过印刷+光刻的技术制备出了工作在13.6 MHz的有机RFID标签[7]。二维条码、有机RFID、无机RFID标签的比较见表1所列。

由表1可知,在成本和易用性方面,有机RFID标签和二维条码标签都具有成本低廉且方便易用的特点。在环境适用性、读取方向以及读取距离方面,有机RFID标签和无机RFID标签具有防尘防水、耐腐蚀、远距离任意方向读取的特点。如果商品需要贴有机RFID标签,那么物流运输、仓储、POS(Point of Sale,POS)以及超市不能要求标签具有超长的使用寿命。由此看来,有机RFID在读取速度、信息容量、重复使用、使用寿命上虽不如无机RFID标签,但也能满足商品对标签的要求。这为有机RFID标签的大规模推广使用提供了可能。

3 农产品食品安全溯源系统

3.1 农产品食品安全追溯系统及信息模型

农产品食品安全溯源系统[7]包括种植场运输物流加工生产物流仓储超市消费者的顺序流程和从消费者超市物流仓储加工生产运输物流种植场的追溯过程,其构成了整个食品安全的溯源流程。下面是不同的生产环节以及与之匹配的信息。

(1)种植场:种植场基本信息、肥料信息、用药信息、生长信息及转入转出信息。

(2)物流运输:物流企业基本信息与运输起止位置及时间。

(3)生产加工:加工企业基本信息、加工前基本信息、加工成品后基本信息及转入转出信息。

(4)物流仓储:仓储企业基本信息、运输起止位置、时间、温度信息、湿度信息等。

(5)在农产品食品安全追溯系统中,对每个不同的环节采用不同的标签技术对其标识,可以实现从餐桌到种植场的全程追溯,从而保证消费者的食品安全。

3.2 食品安全追溯系统的基本框架

由于农产品食品安全追溯系统中的每个生产环节对信息录入以及追溯的要求不同,信息量大且复杂,仅依靠追溯信息和标签很难解决,因此需要建立相关的食品安全数据中心,采用标签和数据中心相结合的方式才能满足追溯系统的要求。农产品食品追溯系统框架如图1所示。

在种植场上,管理人员每天都要详细记录种植过程中使用的农药及使用频率和剂量,待农产品成熟上市时,管理人员就把相关信息上传到“食品安全数据中心”,消费者在服务终端硬件上可以依据相关标签的追溯码信息全面清晰地追溯到生产环节每一步的录入信息。

消费者在类似ATM机终端上可凭借信息标签清楚查看食品的产地、种植时间、营养成分以及种植过程中使用的肥料、杀虫剂和除草剂种类,包括种子信息和日常种植的照片。

在物流运输管理平台、生产加工管理平台和种植场管理平台等将类似的数据汇集处理,然后上传至“食品安全数据中心”,最终由消费者在超市终端查询。

在整个农产品食品追溯框架中需要政府建立自动食品安全监测平台[8],并设置专门机构对追溯系统涉及的种植场、运输企业、仓储企业等进行监督。在农产品生产环节录入的信息都要通过相应的管理平台将产品信息汇集到“食品安全数据中心”。消费者可以在公告查询系统根据标签附带的追溯码信息在“食品安全数据中心”查询到该产品生产环节的所有信息。一旦出现食品质量问题,可以通过数据中心实现对农产品的向上追溯和向下追踪,从而明确相应的法律责任事故方。

4 有机RFID标签在农产品食品安全追溯系统中的应用

农产品食品安全追溯系统具有多个生产环节,信息量大、覆盖范围广,且从餐桌到消费者的生产链也很复杂。同时,中国现有的经济条件和科技基础在一定程度上决定了在整个生产链环节全部使用电子标签还不现实[9],因此农产品食品安全系统中的6个环节应结合标签技术的不同特点去选择标签。

4.1 种植场

农产品种植后,种植场管理平台会根据种植过程中农产品的批次、肥料、农药等情况,在种植场管理平台生成唯一的“农产品生产标识码”,在管理平台上录入农产品的个体信息库并传至食品安全数据中心。由于农产品个体的信息量比较大,而且在信息录入环节需要逐个登记农产品的标签,因此在种植环节适合采用RFID作为“农产品生产标识码”的载体。“农产品生产标识码”在食品安全数据中心有唯一的RFID标签与其对应。由于农产品的生产周期和市场流通时间均低于一年,故采用有机RFID标签比较适合,该标签不仅信息数据加密性强,还降低了成本。

4.2 物流运输

物流企业在物流运输过程中将农产品涉及的生产和物流信息通过物流运输管理平台传输至食品安全数据中心。无机RFID标签适用于物流运输时间超过一年的情况,有机RFID标签适用于物流运输时间低于一年的情况。

4.3 生产加工

生产加工企业存在若干生产环节,可根据对农产品的加工过程进行流水线式监控,将每个生产环节的处理信息及时录入生产加工管理平台,并上传到食品安全追溯中心。即对生产加工过程生成的“农产品生产加工标识码”和“农产品生产标识码”进行登记,并建立一一对应的关系。此时“农产品生产加工标识码”成为农产品唯一的标识。通过“农产品生产标识码”可以追溯到生产过程中的农产品,通过“农产品生产加工标识码”可以追溯加工后的农产品,实现了从生产到加工的全部信息的全面追溯。

因为农产品生产加工后,需要标签数量相对较多,采用无机RFID标签不仅在成本上负担极大,在农产品跟踪管理上也只能分批次进行。有机RFID标签或者二维条码应用在这个环节很合适。但由于二维条码在运输过程中易受到污染等原因,有机RFID标签所具有的环境适用性及其读取方式更适合本环节 [10]。

4.4 物流仓储

基于4.3的分析,在物流仓储环节采用“农产品生产加工标识码”进行信息数据的管理。通过管理平台向信息中心汇总物流基本信息,仓储基本信息,多个时间节点的物流温度、仓储温度等信息,实现农产品在物流仓储环境的个体化管理过程。物流基本信息、仓储基本信息、实时物流温度、湿度、二氧化碳浓度等数据在管理平台进行统计整理,最后上传至食品安全数据中心。物流仓储环节实现了农产品在物流仓储转换的个体化管理。

4.5 超市

在超市出售农产品时,有机RFID标签标识的“农产品生产加工标识码”在超市的管理平台被读取,生成一个对应的“用户标识码”。“用户标识码”和“农产品生产加工标识码”在数据中心登记上传,两者之间有唯一的对应关系。使用标签上的“用户标识码”的农产品基数大,采用二维条码或者有机RFID标签比无机RFID标签成本低。超市是否使用二维条码或有机RFID标签还需要根据消费者的习惯和超市的具体配置来确定,两者在理论上没有差异。

4.6 消费者

超市向消费者提供二维条码或有机RFID标签,消费者可以通过公共查询系统查询到产品的“用户标识码”。通过“用户标识码”可以查到超市的信息,进一步追踪到“农产品生产加工标识码”。根据“农产品生产加工标识码”可以追溯到农产品的加工与仓储信息,进一步追溯到农产品的“农产品生产标识码”。通过“农产品生产标识码”可以查询到农产品的批次、肥料、农药等信息。通过终端,消费者可以追溯到农产品整个生产过程的信息。

根据农产品生产过程不同环节的特点采用不同的标签技术。标签技术和溯源环节的适配如表2所列。

5 结 语

在成本和易用性方面,有机RFID标签具有二维条码标签成本低廉且方便易用的特点。在环境适用性、读取方向以及读取距离方面,有机RFID标签具有无机RFID标签防尘防水、耐腐蚀、远距离任意方向读取的特点。尽管有机RFID标签在读取速度、信息容量、重复使用率、使用寿命方面不如无机RFID标签,但并非在农产品食品溯源系统的每个环节都需要这些特性。这为有机RFID标签的大规模推广使用提供了可能。

农产品食品安全溯源系统的主要环节包括种植场、运输物流、生产加工、物流仓储、超市和消费者6个环节,应根据不同环节的特点选择不同的标签技术。种植周期较短的农产品可使用有机RFID标签代替无机RFID标签,而在超市可选择性使用有机RFID或二维标签。引入溯源过程的有机RFID标签不但大大降低了农产品食品的溯源成本,还可以加快农产品食品溯源技术在实际中的普及与大规模应用。

参考文献

[1]余平祥,巫远媚,胡月明,等.RFID食品安全可追溯系统读取率优化策略研究[J].农业工程学报,2008,24(7):132-136.

[2]黄锋,郝鹏,吴华瑞.RFID 中间件在农产品安全追溯系统中的应用[J].农业工程学报,2008,24(S2):177-181.

[3]任守纲,徐焕良,黎安,等.基于RFID/GIS物联网的肉品跟踪及追溯系统设计与实现[J].农业工程学报,2010,26(10):229-235.

[4]谭民,刘禹,曾隽芳.RFID技术系统工程及应用指南[M].北京:机械工业出版社,2007.

[5]张姝楠,郭波莉,潘家荣.RFID技术在食品全程跟踪与追溯中的应用[J].食品研究与开发,2007,28(9):148-151.

[6]胡心怡.无线射频识别技术在规模化奶牛场中的应用[J].黑龙江农业科学,2010(1):76-77.

[7]田雪雁,徐征,赵谡玲,等.有机无线射频识别技术的研究进展[J].半导体技术,2008,33(4):277-280.

篇7

一、 农产品可追溯系统的含义及重要性

1.农产品可追溯系统的含义。可追溯系统(Traceability System)就是在产品供应的整个过程中对产品的各种相关信息进行记录存储的质量保障系统,其目的是在出现产品质量问题时,能够快速有效地查询到出问题的原料或加工环节,必要时进行产品召回,实施有针对性的惩罚措施,由此来提高产品质量水平。“农产品可追溯系统”是追踪农产品(包括食品、饲料等)进入市场各个阶段(从生产到流通的全过程)的系统,有助于质量控制和在必要时召回产品。从用途上讲,农产品分为食用农产品和工业用农产品。就目前食品安全事件对人类生命健康造成的危害来说,解决食用农产品的质量安全问题迫在眉睫,本文主要论述针对“食用农产品”的可追溯系统。

2.实施农产品可追溯系统的必要性。可追溯系统最早应用于汽车、飞机等一些工业品的产品召回制度中。自20世纪70年代以来,食品安全问题日益突出,食源性疾病危害巨大。国际上,疯牛病、禽流感等疾病相继爆发和传播,在国内,发生了苏丹红、劣质奶粉等食品质量事件,食品安全问题引起了人们的广泛关注。实施农产品可追溯系统的重要性日益凸现。

(1)农产品可追溯系统是控制农产品质量安全有效的手段。ISO9000认证、GMP(良好操作规范)、SSOP(卫生标准操作程序)、HACCP(危害分析和关键点分析系统)等多种有效的控制食品安全的管理办法纷纷被引入并在实践中运用,取得了一定的效果。但是上述的管理办法都主要是对加工环节进行控制,缺少将整个供应链连接起来的手段。

可追溯系统强调产品的惟一标识和全过程追踪,对实施可追溯系统的产品,在其各个生产环节,可以实行HACCP、GMP或ISO9001等质量控制方法对整个供应链各个环节的产品信息进行跟踪与追溯,一旦发生食品安全问题,可以有效地追踪到食品的源头,及时召回不合格产品,将损失降到最低。

(2)实施农产品可追溯成为农产品国际贸易发展的趋势之一。在国际上,欧盟、美国等发达国家和地区要求对出口到当地的部分食品必须具备可追溯性要求。欧盟管理法规No.178/2002要求从2005年1月1日起在欧盟范围内销售的所有肉类食品都能够进行跟踪与追溯,否则就不允许上市销售。日本决定在2005年之前建立优良农产品认证制度,对进入日本市场的农产品进行“身份”认证。发达国家建立的食品质量安全追溯体系,除了可以有效保证食品安全卫生和可以溯源外,其贸易壁垒的作用也日益凸显。由此可见,我国建立农产品可追溯体系不仅能为人民群众的饮食健康提供优质安全的农产品,同时也是打破国外因食品安全追溯而设置的贸易壁垒的重要手段,对提高我国农产品在国际市场上的竞争力起到重要的作用。

二、国内外农产品可追溯系统比较研究

1.国内外实施农产品可追溯系统的基本情况介绍。

(1)国内现状。

①进行了食品可追溯系统初步的研究,制定了一些相关的标准和指南。我国关于食品溯源体系的研究始于2002年,在研究和实施过程中,逐步制定了一些相关的标准和指南。如为了应对欧盟在2005年开始实施水产品贸易可追溯制度,国家质检总局出台了《出境水产品溯源规程(试行)》,中国物品编码中心会同有关专家在借鉴了欧盟国家经验的基础上,编制了《牛肉制品溯源指南》。陕西标准化研究院编制了《牛肉质量跟踪与溯源系统实用方案》。

②一些地方和企业初步建立了部分食品可追溯制度,了一些法规。2001年7月,上海市政府颁布了《上海市食用农产品安全监管暂行办法》,提出了在流通环节建立“市场档案可溯源制”。2002年,北京市商委制定了食品信息可追踪制度,明确要求食品经营者购进和销售食品要有明细账,即对购进食品按产地、供应商、购进日期和批次建立档案。

2005年9月20日北京市顺义区在北京市率先启动蔬菜分级包装和质量可溯源制,天津市为了确保市民购买到可靠的无公害蔬菜,实行无公害蔬菜可溯源制,推出网上无公害蔬菜订菜服务。

③进行了农产品可追溯系统的初步试点。2004年,由国家质检总局、山东省潍坊市及寿光市质量技术监督局等部门共同协作,在寿光田苑蔬菜基地和洛城蔬菜基地进行蔬菜质量安全可溯源系统的探索。中国物品编码中心通过“中国条码推进工程”,推动条码技术在我国食品可追溯中的应用。先后在陕西、北京、上海、山东等地开展食品追溯技术研究和试点,如在上海建立的“上海超市农产品查询系统”,在北京建立的金维福仁清真食品有限公司“牛肉产品跟踪与追溯自动识别技术应用示范系统”,在山东寿光实施蔬菜可追溯信息系统,、在江西建立水果溯源信息系统等。

从2004年2月8日起,上海市通过“上海食用农副产品质量安全信息平台”对食用农副产品的生产过程监控、条码识别和网络查询进行系统管理。农业企业通过“食用农副产品安全信息条形码”给每个产品建立起相应的生产档案。

福建省首个肉品质量查询系统2005年8月28日在厦门市正式开通,这种系统可让消费者获知肉品生产经营的所有信息,从而可以有效地控制肉品的生产质量。

济南市从2005年9月起开展食品安全信用体系建设试点工作,建立健全食品市场准入制、食品安全事故可追溯制和不合格食品退市制等。

2004年由北京市农业局和河北省农业厅共同承担农业部的“进京蔬菜产品质量溯源制度试点项目”,由河北6县市蔬菜试点基地使用统一的包装和产品标签信息码,向北京市新发地和大洋路两个批发市场供货。

2.主要发达国家农产品可追溯系统现状分析。从20世纪90年代开始,许多国家和地区已经应用可追溯系统进行农产品质量安全管理。

(1)欧盟的农产品可追溯系统。欧盟的农产品可追溯系统应用最早,尤其是活牛和牛肉制品的可追溯系统。

欧盟把农产品可追溯系统纳入到法律框架下。2000年1月欧盟发表了《食品安全白皮书》,提出一个项根本性改革,就是以控制“从农田到餐桌”全过程为基础,明确所有相关生产经营者的责任。2002年1月欧盟颁布了178/2002号法令,规定每一个农产品企业必须对其生产、加工和销售过程中所使用的原料、辅料及相关材料提供保证措施和数据,确保其安全性和可追溯性。

根据牛肉标签法,欧盟国家在生产环节要对活牛建立验证和注册体系,在销售环节要向消费者提供足够清晰的产品标识信息。

(2)美国的农产品可追溯系统。在市场经济高度发达的美国,农产品可追溯系统主要是企业自愿建立,政府主要起到推动和促进作用。

2003年5月FDA公布了《食品安全跟踪条例》,要求所有涉及食品运输、配送和进口的企业要建立并保全相关食品流通的全过程记录。

美国的行业协会和企业建立了自愿性可追溯系统。由70多个协会、组织和100余名畜牧兽医专业人员组成了家畜开发标识小组(USAIP),共同参与制定并建立家畜标识与可追溯工作计划,其目的是在发现外来疫病的情况下,能够在48小时内确定所有涉及与其有直接接触的企业。

(3)日本的农产品可追溯系统。在农产品可追溯系统应用方面,日本走在前列,不仅制定了相应的法规,而且在零售阶段,大部分超市已经安装了产品可追溯终端,供消费者查询信息使用。

在政府的推动下,日本从2001年起在肉牛生产供应体系中全面引入信息可追踪系统,要求肉牛业实施强制性的零售点到农场的可追溯系统,系统允许消费者通过互联网输入包装盒上的牛肉身份号码,获取他们所购买牛肉的原始生产信息。

(4)其他国家的农产品可追溯系统。英国政府建立了基于互联网的家畜跟踪系统(CTS)。该系统记录了家畜从出生到死亡的转栏情况,农场主通过该系统的在线网络来登记注册新的家畜,查询其拥有的其他家畜的情况。

加拿大从2002年7月1日起开始实施强制性活牛及牛肉制品标识制度,要求所有的牛肉制品采用符合标准的条码来标识。

国家牲畜标识计划(NLIS)是澳大利亚的家畜标识和可追溯系统。活牛采用经过NLIS认证的耳标或者瘤胃标识球来标识身份,牛迁移到新的地点时,养殖场或屠宰场的射频身份读取器将读取并在NLIS数据库中记录其迁移信息。

巴西农业部决定,从2004年3月15日起,对肉牛实施强制性生长记录,实行从出生到餐桌的生长情况监控。

3.国内外发展比较研究。

(1)政府在农产品可追溯系统建立中都起到了较重要的作用。从国外发达国家到我国,我们都可以看到政府在农产品可追溯系统中都起到了重要的作用,包括日本、欧盟、加拿大、英国等国家,也包括中国。

(2)农产品可追溯系统多是先从家畜产品开始。我国和国外发达国家相似,农产品可追溯系统的建立首先都是从家畜产品开始的,特别是很多国家都是首先从牛肉产品开始的。

(3)农产品可追溯系统中使用的技术手段比较类似。国外发达国家在开展农产品可追溯系统时,通常使用EAN.UCC码作为追溯的主要技术手段。

(4)消费者支付意愿具有共性。在实施可追溯系统中,国外与我国消费者都表现出了一定的可支付意愿。国外研究显示如果附加关于食品安全和动物福利保证的产品信息,那么对可追溯性的支付意愿更高。

三、对我国实施农产品可追溯系统的相关建议

从上面的比较分析我们可以看到,国外发达国家可追溯系统取得的一些经验对我国实施可追溯系统提供了重要的参考建议。

1.农产品可追溯系统要逐步建立,不能操之过及。农产品可追溯系统的建立需要花费一定的成本,在我国还没有足够的经验之前,应该首先选取单位价值比较高的产品进行试点,一旦获得一定的成功和经验后,再向其他产品推广,更符合我国的发展实际。

2.要选择一部分条件比较成熟的企业进行试点,再逐步推广到更多的企业。我国地域广阔,企业数量重多,规模资质各不相同,因此在实施农产品可追溯系统中应该首先选择规模比较大,条件比较成熟的企业进行试点,取得一定的经验后再进行推广,更能起到事半功倍的效果。

3.进一步加强政府在农产品可追溯系统建立中的主导地位,同时可以考虑建立专门的农产品可追溯系统管理部门进行协调与管理。

在我国农产品可追溯系统建立初期,政府的作用是不可替代的,因为在建立初期,企业花费成本较高,收益不能马上显示,因此从市场经济运行的角度来看,在我国企业缺乏主动建立农产品可追溯系统的动机,因此在这种情况下,政府的作用非常重要,将对我国农产品可追溯体系的建立起到重要的保障作用。我们完全可以向西方国家那样,首先可以强制一部分企业实施可追溯,等市场条件逐渐成熟,再逐渐过渡为市场化运作。

另外,从我国目前实施农产品可追溯系统的现状来看,政府尽管起到了比较重要的作用,但是多头管理现象仍然比较严重,不同的行业,不同的管理机构,不同的省都有着不同的管理,往往造成了很多事件的冲突不协调,例如,不同行业和系统开发出来的可追溯条码就各不相同,存在不相容,效率不高的现象,因此建立一个国家负责管理农产品可追溯系统的权威机构,统一行动,会提高我国农产品可追溯系统的效率。

参考文献:

篇8

【摘 要】研究物联网技术在农业生产有机蔬菜生产与供应链质量安全管控中的应用,以传感网、视频分析、标签技术为基础,开发生产过程日志与档案系统,供应链质量安全追踪溯源系统和信息系统,在有机蔬菜基地布置无线传感网和监控网,利用组合RFID、条码和二维码实现有机蔬菜溯源,提供多样化的信息方式便于消费者查询。

关键词 农产品;质量追溯;物联网;无线传感网;视频分析

基金项目:本文部分得到武汉市科技局科技攻关项目(2013010602010217)、湖北省科技支撑计划项目(2014BAA153)的支持。

作者简介:孙奕敏(1976.12.26—),女,硕士,中国人民武装警察部队山东总队训练基地,讲师。

王玙璠(1991.12.14—),女,武汉大学,硕士研究生。

艾浩军(1972.10.08—),男,武汉大学,副教授。

0 引言

我国拥有数十亿人口,属于农业大国,农产品历来是政府关注的重要问题。近年来,农产品质量安全问题受到了前所未有的高度重视。2007年8月17日,中华人民共和国国务院办公厅宣布成立国务院产品质量和农产品安全领导小组。各个省市配合中央政府的工作,分别成立了省、市产品质量和农产品安全领导小组。2007年初,上海市产品质量和农产品安全领导小组12J出台一系列政府监督、控制政策。2007年10月,该小组启动“上海市产品质量和农产品安全专项整治”,在产品和农产品生产、加工、流通和消费所有节点宣传活动的内容。

农产品质量安全问题不仅关系到公众的身体健康,而且对农业发展、农民增收、农业贸易和农业现代化建设具有重大影响,成为新时期我国农产品生产和供给急需解决的一个重要课题。要达到提高农产品优质生产和消费安全目标,就要解决和实现对农产品“从生产到餐桌”的全程质量监控,治本之策是要建立完善的农产品质量安全体系。

近年来,农产品农药残留、兽药残留和其他有毒有害物质超标造成的餐桌污染和引发的中毒事件时有发生。解决“餐桌污染”问题,除了保护农业产地环境和完善农产品市场准入外,建立农产品质量安全信息系统,加快农产品质量安全信息的有效传播,是解决“餐桌污染”信息不对称问题的重要途径之一。

1 农产品质量管控的要点

为确保有机农业产品满足有机农产品的标准,保障食品安全必须从以下两个方面着手。

1.1 过程管控

为了保证食用农副产品质量安全信息平台提供消费者查询信息的可靠性,对于加入平台的企业要求使用专门的生产管理系统,采集农产品生产全过程数据。对农产品产前的水、气、土等环境检测数据记录,产中生产过程控制、饲料/肥料的使用、农药/兽药等的使用,产后对产品的药物/重金属残留等记录。实现对农产品供应链的全过程监控和管理。

1.2 供应链溯源

供应链的每个成员都应当能够追溯产品生产者以及产品成分、包装、来源等特征,也应当能够向前追踪产品成分、包装和产品的的每一项活动。要设计一个具有对整个价值链可追溯性的供应链,企业必须创建流程和基础架构来收集、集成、分析和传递关于产品来源和特征的可靠信息,贯穿于整个供应链的各个阶段(从农场到餐桌)。它将企业的技术解决方案整合起来,使物理供应链(商品的运动轨迹)和信息供应链(数据的收集、存储、组织、分析和访问控制)能够相互集成。有了这样的供应链可视性,企业就能保护和推广品牌、主动地吸引其他客户并降低安全事故的影响。

2 系统技术体系

物联网的农业生产基地现场管理与质量追溯系统涉及的技术体系包括以无线传感网为基础的环境检测技术,以视频内容分析为基础的视频摘要自动生成技术,以RFID、二维码标签为基础的产品溯源技术。

2.1 基于无线传感网的环境监测技术

通过无线网络,利用短程通信与远程通信技术相结合,采用Zigbee组网,Zigbee到IP通过传感网关接入到场区信息网,将传感器采集的环境数据,包括温度、湿度、敏感气体、菊酯类农药浓度等信息收集起来,形成无线传感网络,实现对有机会蔬菜基地的监测。有机蔬菜生产场地和加工车间的传感网如图1所示。

2.2 视频监控日志与摘要的自动生成技术

在有机蔬菜生产场地内的关键监控点部署摄像头,实现虚实结合可视化操作,采集视频证据数据,利用视频内容分析技术,分割感兴趣目标,提取视频特征,提取典型的视频事件,通过高级语义进行表达,自动生成事件的视频摘要和视频日志,将人从海量的视频数据中解放出来,提高视频监控的可用性,提高检索效率,降低存贮成本,同时便于日后查找和产品溯源。

2.3 组合RFID、条码和二维码的产品溯源技术

通过RFID、条码和二维码的组合识别码提供的信息,RFID具有容量大、寿命长、自动识别等特点可用于大行包装的标示,用于记录生产产地、生产单位、生产过程、农药化肥使用情况等信息,如图2所示。而条码和二维码成本低,能记录同一类商品的信息,可广泛应用于单个商品的标识,如图3所示。同时二维码可便于手机进行查询。当产品发生安全性等事故时,通过追溯信息系统可迅速回溯过程及查明原因所在,正确而迅速地回收产品,防止产品事故的再发生,也可确认业者的责任,从而有效促进对生产和流通过程的重视,保障农产品质量安全。

3 系统建设内容

3.1 系统基本结构

根据目前国内的实际情况,提出建设物联网有机农业的思路,系统建设内容主要包括建设基础信息网、生产过程日志与档案系统、有机农产品标签跟踪系统、有机产品销售系统和系统管理平台。智慧农业系统的结构可以采用物联网应用的一般结构,如图4所示。

3.2 建设基础信息网

3.2.1 场区信息网

场区信息网既要承载场区内的生态环境信息、视频信息和一般办公用途信息。同时还能接入互联网,实现内网与互联网(外网)的互联互通,这对场区的信息网建设提出了新的要求。一方面,办公楼要接入电信运营商宽带,另一方面,各基地要通过无线接入点(Wi-Fi AP)将信息传递到办公楼,实现信息互通。

需要考虑场区内各功能区的地理位置分布,在场区内部署局域网,各区之间通过网线连接,形成无线局域网,无线局域网采用IEEE 802.11n标准,标准速度达到150Mbps。按此方式组网的场区信息网,主干道的无线网络理论速度是300Mbps,实际运行可以达到150Mbps的速度,能满足场区信息化的要求。如图5所示。

3.2.2 无线传感网

场区无线传感网要承载场区内的种植基地、养殖基地和沼气池的生态环境信息,包括温度、湿度、照度和敏感气体浓度等,将这些信息通过无线自组网络传递到ZigBee网关,采用IEEE 802.15.4标准,再由LAN局域网传送到控制台服务器进行分析,实现传感网与互联网的互联互通。

场区内无线网络部署方案如图6所示。

在种植基地和养殖基地内都布置了大量传感器,这些传感器采用自组织的方式形成无线传感网进行信息传递与发送,最后通过一个无线传感网关搜集所有的传感节点信息,再将这些信息统一发送到控制台服务器进行处理。这种无中心的分布式控制网络,不需要类似基站或者访问服务点这样的中心控制设备,即不需要利用现有的网络基础设施同样能提供一种通信支撑环境。在任何时间、任何地点不需要现有的信息基础网络设施的支持,快速构建起一个移动通信网络。

3.2.3 无线视频监控网

视频监控的目的有两个,一是对生产过程监管,二是生产过程的展示。为保证设备的兼容性,所有摄像头均内置编码设备,即采用网络摄像机,并且尽量选用支持以太网供电(POE)的设备。

组网方式见图7:

在场区的种植基地、养殖基地和沼气池的重要监控点布置摄像设备,通过无线网络将实况录像发送至控制台服务器,服务器对这些视频数据进行处理和分析后,再通过光纤接入的大宽带上传至互联网,提供在线展现,让人们在家也能实时观看场区内的情况。

3.3 生产过程日志与档案系统

服务器对视频数据进行的处理和分析包括对冗余信息的剔除、将有用的信息保存。由于场区内视频信息量非常大,只靠人工处理这些信息变得不可能,因此可以引进计算机视觉的技术,通过有效的算法对智能处理这些视频,提取出人们感兴趣的视频摘要,对每天的生产情况提取视频日志,这样建成的日常视频档案可以有效地对场区进行科学地管理。

无线传感网与无线视频监控网并不是独立的,它们应当相互依存,将某个监测点的生态环境信息和视频监控信息应该绑定在一起,做到“虚实结合”,当查询产区内某一点的信息时,相关的环境与视频信息就都能同时显示出来,使得有机农产品的生产全过程可视化。

将无线传感网和视频监控网采集到的信息结合统一起来,构成生产过程日志与档案,构建管理这些信息的系统,可以作为后续质量安全管控的有力支持。

3.4 有机产品标签跟踪系统

蔬菜供应链和大多数农产品供应链一样,也包括生产、加工、仓储、运输和销售等几个环节,提交有机蔬菜供应链效率的关键也是如何协调几个环节及如何提高每个环节的效率。如图8所示。

从蔬菜供应链整体可以看到,通过使用RFID和条码、二维码的组合标签技术,能够方便地把整个供应链中各个环节的信息读入公共数据库,各个环节也可以便捷地增加相应环节的数据。消费者和相关主管部门也可以通过通信网络和终端进行查询与追溯。根据现有商业模式的使用习惯和使用成本,可以整箱使用RFID标签,内部小盒装使用条码或者二维码。

标签上要记录的信息包括:

(1)生产阶段的信息,包括品号、产地、电话、化肥明细、种植时间等。

(2)加工阶段的信息:小盒贴上条码,大盒贴上RFID标签,二维条码直接保存了产地、收割时间等重要信息,也能透过二维码访问中心数据库。

(3)仓储阶段记录的信息,包括入库时间、入库区位、货架货位和出库时间等。

(4)运输阶段的信息:gps+RFID标签,包括上车时间、途中温度状况、路线信息、下车时间等。

这些信息分别记录在RFID、条码和二维码标签上,根据这三种标签各自不同的特点和功能,采用不同的方式来标识包装,记录了有机农产品生产过程和供应链全程的信息,能够有效进行质量管理,既节约了成本又能在出现问题时方便消费者追踪溯源。二维条码包装过程和记录的信息如图9所示。

通过RFID、条码和二维码的组合识别码提供的生产产地、生产单位、生产过程、农药化肥使用情况等信息,当产品发生安全性等事故时,通过有机蔬菜标签跟踪系统可迅速回溯过程及查明原因所在,正确而迅速地回收产品,防止产品事故的再发生,也可确认相关的责任,从而有效促进对生产和流通过程的重视,保障农产品质量安全。

3.5 有机产品销售系统

记录销售阶段的信息,包括进入店面时间、销售时间、总量统计、过期数量等。该系统软件还需要与超市的营业网点的进销存系统对接。

最终消费用户可以使用自助式信息查询机,查询到小包蔬菜的所有信息。如图10所示。

该系统的成功投入使用可以促进有机蔬菜的透明化跟踪,提高销售量,让消费者“买的放心,吃的安心”。这样物联网不仅应用在农业生产与运输,也能应用于有机农产品的销售等服务当中,对物联网产业链的发展也起到积极地推动作用。

3.6 系统管理平台

可以通过局域网综合管理场区视频,查询生态环境信息,有机农产品跟踪信息。建立互联网网站,按照农产品的生产流程设计一个循环农业的体验平台,在互联网上展示农产品的生产全过程。为有机农业的发展提供了绝好的契机,不论是生产、运输还是销售全程供应链都实现可视化、透明化监控,有利于规范我国农产品生产和贸易行为,指导农产品生产并引导消费,保障农产品的有效供给和消费安全,增强我国农产品在国内外市场上的竞争力,实现农业增效、农民增收和农业可持续发展。

信息系统需要公开农产品生产过程信息和供应链管控信息,以保证食品安全,它提供多途径的便民查询,如通过12316便民平台,拨打热线电话查询;手机短信查询;通过手机拍摄二维码图片,再上传到网上查询;甚至利用卖场的直接读取设备,如触摸屏等查询该农产品的生产和供应链信息,对生产经营者形成有效的社会监督。

4 小结

要达到提高农产品优质生产和消费安全目标,就要解决和实现对农产品“从田头到餐桌”的全程质量监控,治本之策是要建立完善的农产品质量安全体系。通过信息化的手段,对农产品质量安全进行“数字化”管理,在生产过程中,可通过物联网进行环境监控,除可覆盖农业大棚,还可在畜牧养殖、水产养殖、生产环境监测、仓储环境监测等场景进行应用。通过多种传感器实现信息的收集与传递,农牧业生产各环节都可以控制,并且食品可以溯源。智慧农业通过过程管控和供应链溯源,从而有效保证食品质量安全,让人们吃的放心,吃的健康,吃的新鲜,完成从田间迅速到餐桌的快捷过程,通过物联网我们可以实现这一远景目标。

参考文献

[1]白红武,胡肄农,王立方,陆昌华.基于GIS的生猪及产品物流与追溯平台构件化设计[J].江苏农业学报,2008(5).

[2]侯春生,夏宁.RFID技术在中国农产品质量安全溯源体系中的应用研究[J].中国农学通报,2010(3).

[3]张欣露,王成,吴勇,乔晓军,侯瑞锋,王开义.集成传感器电子标签在农产品溯源体系中的应用[J].农业机械学报,2009(1).

[4]黄海龙,蒋平安,张霞,武红旗,李永,刘洪蓬.基于Web的农产品追溯系统的设计与开发[J].新疆农业科学,2010(9).

[5]彭剑,陈光仪.可追溯农产品供应链系统建模研究[J].农机化研究,2010(10).

篇9

未来10年我农业供给侧改革将取得成效

2017中国农业展望大会近日在北京举行,大会了《中国农业展望报告(2017-2026)》。

报告预计,今年我国农业结构将以市场为导向持续优化调整,绿色优质农产品供给有望继续增加,农产品供需结构性矛盾将得以缓解。其中,玉米种植面积将调减1000万亩以上,大豆种植面积将增加900万亩。农产品消费总量则将继续刚性增长,玉米加工消费增长超过10%。

报告预测,未来10年,我国农业供给侧结构性改革将取得明显成效,农产品供需结构性矛盾逐步化解,粮食供需将由阶段性供大于求转向基本平衡。稻谷、小麦等重要农产品产量将保持基本稳定,玉米种植面积到2020年将较2015年减少约6000万亩,大豆生产将恢复至历史高位。

国家农业信贷担保联盟公司挂牌

由财政部、农业部、银监会共同组建的国家农业信贷担保联盟有限责任公司日前正式挂牌,标志着我国在建立健全全国政策性农业信贷担保体系方面迈出重要一步。

据介绍,该公司作为全国农业信贷担保体系的国家层面政策性担保机构,不以营利为目的,在坚持自身信用和可持续发展基础上,实行政策性主导、专业化管理、市场化运作。相关负责人表示,构建政策性农业信贷担保体系,可以为农业和粮食适度规模经营主体贷款提供信用担保和风险补偿,有助于吸引金融和社会资本更多投向农业农村,解决农业融资难、融资贵问题。目前,全国范围内33个省区市和计划单列市已建立省级农业信贷担保公司。

河南“真金白银”支持农民工返乡创业

篇10

中图分类号 S85 文献标识码 A 文章编号 1007-5739(2009)13-0337-02

近年来,政府工作报告中一再强调实施农业标准化,生产有利于公众健康和符合国家食品卫生标准的农产品。保障食品安全,是关系人民群众切身利益、关系我国社会主义现代化建设全局的重大任务。解决农产品质量安全问题,需要从源头抓好抓实农产品安全监管工作。2009年政府工作报告中再次强调,要进一步解决农产品质量安全问题,深入开展食品药品安全专项整治,健全并严格执行产品质量安全标准。实行严格的市场准入制度和产品质量追溯制度、召回制度,要让人民群众买得放心、吃得安心、用得舒心。动物标识溯源体系的建设,正是基于对实施农业标准化和保障食品安全的需要而建立的。经过近几年的试点和实践,青海省动物标识及疫病可追溯体系建设工作取得了积极进展,对推动农业标准化发展发挥了重要作用。

1 当前动物标识及疫病可追溯体系建设现状

1.1 动物溯源体系建设进展情况

近年来,疯牛病、结核病等恶性食源性公共卫生危机在全球范围内频繁发生,高致病性禽流感等烈性人畜共患病在一些国家和地区反复发生和流行,对人类健康和经济社会协调发展造成严重威胁。动物卫生及动物产品安全问题成为各国政府、食品企业及消费者高度关注的焦点问题。2007年中央明确提出要建立和完善动物标识及疫病可追溯体系,这是实施动物及动物产品全程监管的有效手段,是推动农业标准化发展的重要举措,也是我国动物卫生工作与国际接轨的重要一环。为加强对动物标识及疫病可追溯体系建设工作的组织、协调和管理,根据《中华人民共和国畜牧法》、《中华人民共和国动物防疫法》、《畜禽标识与养殖管理办法》(农业部令第67号)及有关规定,青海省出台了《青海省动物免疫标识管理办法》,从省农牧厅至地、县畜牧局逐级成立了动物标识及疫病可追溯体系建设工作机构,制定了详细的实施计划,并按照“加强领导、密切协作,统筹规划、突出重点,分步实施、确保质量,明确任务、落实责任”的工作原则和要求,积极推进溯源体系建设各项工作。按照实施方案的要求,省、地、县动物疫控中心先后举办了3期“动物免疫标识及疫病可追溯体系建设培训班”,培训业务骨干和动物防疫及防疫监督人员1 200人。同时,依法规范建立了规模户和散养户的养殖档案,初步将动物溯源体系的网上信息录入、耳标申购、签收和移动智能识读器、打印机、IC卡等追溯设备发放到位,为动物标识和疫病可追溯体系建设的顺利进行奠定坚实的基础。

1.2 存在的主要问题

1.2.1 动物溯源体系建设工作相对滞后,群众认识还不到位。随着我国人民对农产品从量的要求发展为质量与安全的需求,可追溯系统开始研究和逐步发展起来,但相对于发达国家仍较为滞后。近年来,上海、四川、香港等地发生了瘦肉精、链球菌、禽流感等多起食品安全事件,而无法快速追溯其来源和去处,给社会带来不安,对行业健康发展也带来极大影响。一些地方和企业开始建立了初步的食品可追溯制度,但是仍有少数地区存在思想认识不到位、财政投入不落实等问题,群众参与度不高,与追溯体系建设的总体进展不相适应,并且限制了追溯体系在畜牧业生产统计、动物防疫和动物产品安全监管等方面重要作用的发挥。

1.2.2 市场准入制度还未真正建立起来。畜禽饲养场(户)虽然建立了饲养档案,但由于牲畜流动比较频繁,加之动物防疫监督不到位等原因,免疫档案资料不齐全,一部分牲畜没有佩带免疫标识。除了大、中型超市能够把好准入关外,绝大部分农贸市场出售的动物及动物产品几乎没有任何免疫标识。一旦发生疫情或食品中毒事件,要追溯疫病来源或药物残留的源头就相当困难。

1.2.3 动物溯源体系内部联系还欠紧密。动物标识及疫病可追溯体系由畜禽标识申购与发放管理系统、动物生命周期全程监管系统、动物产品质量安全追溯系统组成。三大系统既紧密衔接,又相互独立,构成从耳标生产、配发,到动物饲养、流通,再到动物屠宰、动物产品销售全程监管的追溯体系。从已运行的程序来看,3个系统之间联系不太紧密,具体运作起来有一定难度。畜禽标识的申购与发放管理系统运行良好,但动物生命周期的监管还不到位,它是动物标识及疫病可追溯体系建设的重要组成部分,目前来看,移动智能识读器只能初步录入一些饲养、防疫方面的基本信息,不能全面地反应产地检疫、运输监督、屠宰检疫以及动物饲养过程中的一些详细信息;在发生重大动物疫病和动物产品安全事件时,不能对动物饲养及动物产品生产、加工、销售等不同环节可能存在的问题进行有效追踪和溯源,不利于及时果断地处置安全事件,达不到快速、准确控制动物疫病的目的。

1.2.4 耳标查询功能不全。包括门户网内的耳标管理,也是只能查到县、乡,不能查到责任人。理想的情况应该是在任何地方,输入标识号查询,就能查到某地某人领用的,这样也就对应了相应的责任,有利于耳标的管理,才能达到真正的追溯源头。

1.2.5 相关的法律法规体系还不健全。《中华人民共和国农产品质量安全法》的颁布实施,为我国农产品质量安全事业奠定了重要的法律基础,进一步规范了农产品产销秩序,更加有效地保障了公众对农产品消费的安全,保障了广大人民群众的根本利益。该法的出台填补了我国农产品质量安全监管法律的空白。但总的来说,目前我国关于农产品和食品质量安全的法律法规体系还不健全,难以构筑现代社会的农产品安全和食品安全保障体系。另外,现在要监管的对象、群体众多,监管的生产单位众多,需要一定的人力和财力,而地方财政缺乏投入的长效机制,无法保证足够的经费和人力来实施农产品和动物产品的监管,相应地产品质量也难以追溯下去。

2 进一步加强动物溯源体系建设的建议

2.1 提高全民思想认识,加大组织协调力度

改革开放以后,我国畜牧业实现了连续20多年的高速发展,肉类、蛋类、奶类产量均居世界前列,但是,我国动物饲养管理水平低,活动物跨区域调运频繁,畜牧业抵御动物疫病风险的能力还不是很强,直接影响到我国畜牧业的持续健康发展,影响到我国畜产品的国际竞争力,而且威胁到消费者的身体健康和生命安全。建立动物标识及疫病可追溯体系,不但可以全面分析、及时查找防疫漏洞和薄弱环节,预测评估疫情发生的可能性和发展趋势,提前采取防控措施,有效防止动物疾病蔓延,而且可以规范畜牧业生产经营行为,发展健康养殖业,实施农业标准化。最重要的是能够提高我国动物及动物产品的国际竞争,促进动物及动物产品国际贸易。此外要充分利用各种新闻媒体,不断加大宣传力度,确实让群众清楚明白动物溯源体系建设的重大意义和作用,逐步提高养殖场(户)、屠宰企业、畜产品贩运户等相关组织及人员的思想认识,充分调动他们参与该项工作的积极性。同时,要建立健全各项规章制度,实行领导负责制、岗位责任制和质量考核制,建立重大事项审议制度,加强各部门之间的沟通与交流,保障资金、人员和设备到位,确保溯源工作的顺利实施。

2.2 强化免疫标识的监督与管理

建立养殖档案和防疫档案是实现畜禽及畜禽产品可追溯管理,提高兽医监管水平的基本手段。目前,青海省已发放建立了格式统一、内容全面的畜禽养殖档案。根据养殖档案实时进行跟踪监督,在监督检查中发现没有耳标的动物,要查明原因。未免疫的,在补免的同时佩戴耳标,建立档案;如果已经免疫但未佩戴耳标或耳标确属自然缺损和脱落的,应当凭免疫档案重新佩戴耳标。在产地检疫中,要根据动物免疫耳标的编码,对照查验免疫档案无误后,方可出具产地检疫证明,产地检疫证明应注明动物耳标编码。对于有免疫耳标而没有免疫档案的动物,要查明耳标是否来自合法渠道。对非法采购和使用耳标的,要限制动物出栏,进行补免,2周后方可出证。同时,要追查耳标的来源,对非法供应和使用者进行处罚。对没有耳标的健康动物,也要查明原因,经核实有免疫档案且已经进行有效免疫的,可在补戴耳标后出具检疫合格证明;对无免疫档案的,要补免和补戴耳标,2周后,方可出具检疫合格证明。

2.3 建立快速有效的监管机制

对于出现的重大动物疫情和动物产品质量安全事件,在实现可追溯后,必须建立快速有效的监管机制和反应机制;必须有一个有效的机制和合法的机构在最短时间内处理好存在的动物产品质量安全问题,把损失减少到最低程度。

2.4 进一步完善和规范畜禽标识信息数据库管理

篇11

    1.2校企合作开发现代农业技术课程体系学院按照项目建设方案,结合现代农业企业工作过程,抓紧组织项目相关教师制定智能化农业技术实训基地运作的生产、建设、服务、管理目标,确定实训项目设置、运作和岗位能力培养。在课程建设中,专业教师深入企业进行调研,使课程、课件的相关内容真实反映企业生产经营实际。并根据生产实际要求,抓紧组织开发现代农业技术课程。目前已经开发了农务信息管理、农产品质量溯源等课程,并编写了《农务信息管理》、《农产品质量溯源》等教材,这两本教材同时还作为广西农垦岗位培训用书。

    1.3校企合作建设现代农业技术服务平台学院与合作企业单位组建服务广西农垦的甘蔗糖业信息化技术服务平台、农产品质量追溯系统信息数据处理与动态监控平台,直接为广西地方及农垦企业提供农业标准化生产技术、甘蔗糖业农务信息管理、农产品质量检测、农产品质量溯源、现代设施农业技术等多项新技术服务,针对企业需要每年开出相关的企业培训项目,按照企业特点和要求选派高水平的专业教师承担企业员工和管理人员的业务培训工作,每年为企业员工开展农业职业资格的培训和技能鉴定工作。

    2建设成效

    2.1推进校企合作开展高职教育教学改革近几年来,学院与广西农垦集团企业、广西百色国家农业科技园区、广西乐业县顾式茶有限公司、广西绿大洲农业开发有限责任公司等12家企业签订了产学研合作协议。校企合作积极开展作物生产技术专业人才培养模式和课程体系改革,按照能力递进的人才培养规律,学院与企业共同成为人才培养的主体,校企共同设计、实施“模拟承包+生产项目驱动”工学结合人才培养模式改革,引入无公害芒果生产技术规程等行业技术标准和高级果树园艺工、高级花卉园艺师、高级茶园园艺工等职业标准,由行业企业技术骨干和专业教师共同开发农产品质量溯源、现代企业经营管理、农务信息管理等课程。农产品检验室与广西三达环境监测有限公司达成了合作协议,共同进行环保部门及企业提供的环境样品的分析检验,把农产品检验室作为他们的第二实验室(已挂牌),利用检验室的大型仪器如液相、气相色谱仪等承担部分样品的分析任务。自2009年来,依托智能化农业技术实训基地加强高职实践教学改革研究,与企业共同承担智能化农业技术实训基地建设的研究与实践、亚热带经济作物标准化生产实训基地建设的研究与实践、蔬菜栽培基质次生盐渍化治理技术研究、广西高职农类专业质量评价指标体系研究、行动导向教学法在高职植物造景课程中的应用研究、珍稀植物红皮糙果茶快速繁育技术及其园林应用的研究与示范等8项厅级教改立项课题。在项目实施过程中,共发表教改文章9篇。到位的仪器设备都已正常使用,各个实训室都正常开课。智能化农业技术实训基地每年承担了90多门课程约3000学时的教学工作量。

    2.2充实了实训设备项目的建设实现了学院农科实训条件从原来的传统农业向现代农业、智能化农业的转变。项目对原有的玻璃温室进行了改造,增加室内光、温、水的控制设备,实现了智能控制的功能;对原有生产茶园辅助设计节水灌溉设施和监控设备,实现了室外生产场所的远程监控;对原有实验室进行整合、重新规划设计,进一步完善其设备功能,新建环境生态监测实训室、农务信息管理、质量溯源和农产品质检实训室,具备农产品质量检测、水环境和大气环境分析监测、土壤检测、配方施肥、农务信息管理和质量溯源等功能。新增了环境监测仪、节水灌溉信息采集与控制系统、气质联谱仪、农务专家系统、溯源系统、农业智能系统、数字化农业信息系统等成套大型设备13台套,仪器设备总值698万元。

    2.3作为学院对外交流的窗口智能化农业实训基地建设项目建成后,积极开展对外交流,作为学院对外交流的窗口,接待了许多相关单位的参观和指导,2011年共接待36批395人次的参观。在参观的过程中许多同行对这一建设项目很感兴趣,对项目的组织、实施和成效给予了充分肯定。

    2.4师资队伍整体素质得到了提高项目有计划地选派教师外出培训,每年安排6-8名骨干教师参加各种学习培训,共培养了28名骨干教师,其中邓朝辉派到农业部参加农产品质量追溯系统培训,廖旭辉、麻文胜老师参加了日本岛津公司在北京举办的气相——质谱联用仪的培训,教师的专业能力有明显提高。另一方面,在项目的建设和运行过程中,进一步加深了学校与企业的联系,到企业兼职的教师其动手能力也得到了提高。通过社会服务,许多骨干教师提高了学术水平,取得了较多的科研成果和较广泛的社会资源。

    2.5拉动了招生近年,在农业类招生困难的大背景下,学院对农类专业进行了整合,实行农科大类招生,依托智能化农业技术实训基地共享和辐射作用,广泛发动宣传,搞好课程改革,提高教学质量,夯实内涵建设,2008年专业大类招生164人,2009年招生182人,2010年招生196人,2011年招生252人,专业招生有了明显回升。5年来农业类专业就业率达到98.6%,就业对口率达到80%。

    2.6提升了工学结合质量实施工学结合教学,依托智能化农业实训基地,教学中的大部分项目来源于真实的为企业承担的项目。学生在以项目为载体的学习和项目开发实践中得到职业能力的锻炼,专业人才培养质量进一步提高。以作物生产任务为载体,第二、第三学期根据蔬菜、果树、花卉等作物从春季到冬季生长的季节周期性和管理要求,在老师指导下进行一个季节周期的“模拟承包”实训;第四、第五学期采用统一安排和学生选择相结合的方式,到合作企业进行2次交替专业实训,每次1个月;在第六学期学生进入企业顶岗实习,具备职业岗位能力,与毕业后就业岗位对接。

    2.7专业教育质量与职业技能培训得到加强项目的建设使校内实训基地得到充实、提升,扩大了实训功能。在完善原有实训项目的基础上,新增32个实训项目、356个工位,可以在实训基地完成智能化农业技术相关专业主要工作岗位的实训和相关职业技能的培训,使专业教学中的实践教学与理论教学的比例、新技能与传统技能的比例、心智性专业技能与动作性专业技能的比例得到进一步提高。同时,积极组织学生参加自治区和国家职业技能比赛,在自治区级以上职业技能比赛中有6人获奖。本专业近三年毕业生获“双证书”比例达100%。同时,为社会提供2000多人的职业技能培训服务。

    2.8社会服务成绩利用智能化农业技术实训基地的综合优势,为三农服务,使农民增收,使企业增加经济效益,实现持续发展。近年,学院与广西农垦糖业集团合作申报了广西科技厅项目“甘蔗糖业信息技术服务体系建设示范”,获80万元专项经费支持,还申报了国家科技支撑计划课题“糖厂农务管理信息技术服务应用示范(2007BAD30B06)”,获国家专项经费支持315万元,目前项目已通过科技部结题验收。梁裕教授主持的广西科技厅项目“糖厂农务管理信息技术服务体系建设示范”(桂科攻0895003-2-3)获广西科技厅专项支持40万元,项目已通过科技厅验收并完成成果鉴定。这些项目实施完成后,服务广西、云南等示范蔗区320万亩,惠及26家制糖企业、30多万蔗农,使原料蔗从砍蔗到入榨平均缩短10.6个小时,折合降低蔗糖分损失0.31%,示范区年新增甘蔗产值19800万元,增加工业产值37125万元,税金6326万元,得到合作企业及蔗农的好评。

    学院参与完成农业部农垦司“广西农垦质量溯源建设项目”,与广西农垦局科研处合作建立了广西农垦农产品质量追溯数据中心,搭建省级农产品质量追溯平台,完成了广西农垦水果、生猪、茶叶农产品9个追溯试点,经农业部验收达到优秀等级。依托广西农垦农产品质量追溯数据中心,主持开发广西农垦生产信息管理平台,实现广西农垦企业单位远程生产数据填报及自动统计功能,在垦区92家企业推广使用,得到广西农垦科技产业处的好评。2008——2010年主要参与完成了广西教育厅科研课题“农产品质量追溯网络系统平台的开发与应用”,项目已结题验收。2010开始与百色国家农业科技园区合作开展芒果等特色果蔬质量溯源体系研究,共同联合申报课题,共同开发质量溯源系统。同时为农业企业开发茶叶新品种、改造生产工艺,为企业增收8778万元,桑茶技术创新使桑农每亩增收6000元,为桑蚕产业的发展和桑农的增收开创了一条新路;为茶叶企业设计加工机械,使企业节能增效每年达到22.11~24.66万元;为食品企业研发新产品,企业技术转让每年获税利16万元。

篇12

发展现状

1.农产品质量安全检测体系完善

鹤壁市在建立健全市、县两级农产品质量安全检测中心的基础上,鼓励、引导、支持生产基地、超市、批发市场等建立农产品检测室,进一步完善农产品质量检验检测体系。市农检中心检测能力进一步提高,通过了“计量认证”和“机构许可”认证,被省农检中心命名为省农检中心鹤壁分中心,被农业部指定为无公害农产品认证产地环境评价机构;县级农产品检测中心基本建成。在生产基地、超市、批发市场建立了36个农产品检测点,全市形成了市、县和批发市场、生产基地、超市“两级三层”农产品质量安全检测检验体系。

2.农产品市场准入和产地准出扎实推进

鹤壁市辖区内2个蔬菜批发市场均建立了检测室,开展了市场准入工作,14个蔬菜标准园建立检测室,开展基地准出检测,实行了农产品的“逢出必检、逢销必检”。

3.标准化生产水平进一步提高

鹤壁市相继制定了《小麦高产创建技术标准》、《夏玉米高产创建技术标准》和《蔬菜标准园创建技术标准》等农业地方标准42项,农业生产基本实现了“有标可依”。农业标准化生产基地不断扩大,建立国家级蔬菜标准园1个,省级农业标准化示基地(种植业)7个,市级蔬菜标准园14个,全市大宗农作物的生产90%以上实现了标准化。

4.品牌认证步伐进一步加快

鹤壁市坚持把发展无公害农产品、绿色食品、有机食品和地理标志农产品作为提升农产品质量安全水平、打造品牌农产品的基础工作来抓,积极开展产地检测,鼓励支持农业企业申报“三品一标”农产品,全市认证无公害农产品生产基地30个,无公害农产品33个,有机食品5个,地理标志农产品2个,产品覆盖了粮食、蔬菜、水果等鹤壁市主要农产品。

技术应用

鹤壁资源条件优越,基础设施条件完备,市、县检测体系健全,机构完善,农业生产、科研水平、质量安全多年来一直处于领先水平,多年来在农业信息化建设方面又进行了多方面的实践探索,是全国整体推进型农业农村信息化示范基地,具备实现农产品质量安全智能监管、数字检测的基础条件,可形成良好的示范带动作用。

2010年鹤壁市应用了“农产品质量安全监管系统”。2012年在该系统的基础进行了完善升级,建成了集生产管理、质量控制、检测检验、自动采集、监测预警、溯源追踪、在线监控、统计分析等功能为一体的农产品质量安全信息综合管理平台,对数据采集上报系统、短信预警系统、实验室管理系统、监测预警系统、在线视频监控系统、生产档案系统、质量安全追溯系统、信息系统进行高度集成、深度融合,实现了农产品质量安全监管检测的智能化、网络化、数字化和可视化。目前,平台已在鹤壁市的农产品质量安全监管部门、市县两级农产品质量安全检测中心、蔬菜标准园、农产品批发市场、连锁超市得到充分应用,实现了质量安全监管、检测的双覆盖。

1.数据自动采集,确保真实

为更好地做好鹤壁市的农产品质量安全工作,把关口前移,在蔬菜标准园、批发市场、超市都建设有检测室,应用了农产品质量安全数据采集上报系统,做到了基地“逢出必检”,市场“逢销必检”,蔬菜出基地或进入批发市场、超市之前,必须经过检测,合格后才能流入市场。检测的数据通过系统自动直接采集、加密上传至监管平台,工作人员不能删除修改数据,避免了人为操作的因素,提高了数据的真实性和时效性。

2.运用移动网络,短信预警

当检测出现蔬菜超标现象时,通过应用短信预警系统进行提示预警,如在某批发市场或超市几号摊位检出某样品超标时,系统将第一时间给摊位经营者、市场管理者和监管部门三方同时发短信,提醒他们及时采取措施。

3.检测流程数字管理,提高效率

在市县两级农产品检测中心应用了实验室数字管理系统,系统按照实验室检测检验的流程,从样品接样开始,到任务分配、原始记录、检测结果、检验报告的自动生成,实现了数字化管理。该系统的应用,规范了检测流程,减少了工作误差,提高了工作效率。

4.检测数据智能分析,科学评价

系统具有预警提示、信用评价、同比环比、安全走势等功能,通过对数据的综合分析,随时可对受检单位、品种、检测地区的监测情况进行查询,对于异常情况作出预警提示,便于监管部门及时发现问题,及早采取应对措施,避免发生大的农产品质量安全事件。

5.检测流程远程监控,先进实用

通过在检测室安装的高清摄像装置,运行先进的信息技术和视频压缩技术,对影像资料进行处理,使管理者和生产者随时随地可用手机、电脑查看检测流程、规范程度进行实时远程监控,出现问题及时处理。

6.生产全过程管理,安全高效

加强生产环节的管理,对全市的蔬菜标准园进行了联网对接,应用了生产档案管理系统,使蔬菜生产从产前、产中实现了信息化管理,系统详细记录了生产的全过程,对每次浇水、施肥、喷药等环节的时间、数量、名称、操作人员进行详实的记录,便于监管部门随时可查看投入品使用及管理情况,实现生产的标准化、精准化,为农产品质量安全全程追溯打下了基础。

7.质量安全追根溯源,方便灵活

消费者在购买到农产品后,可以通过手机扫描二维码、触摸屏、短信、网站等方式对所购产品质量安全进行追根溯源,获取从种植、浇水、施肥、采摘、加工、运输、检测、销售整个过程信息,使广大市民放心消费。

8.结果自动,确保安全

批发市场、超市等单位每天检测的情况和价格信息通过该系统自动到LED大屏幕上,消费者每天购买蔬菜时,随时可看到大屏幕上会显示的检测结果和价格信息,实时掌握所购产品的质量安全状况。

篇13

移动互联网技术应用于日常监管

近年来,江苏省下移监管重心,强化属地监管,扎实推进基层农产品质量安全源头监管。

加强监管队伍和能力建设。省市县乡四级全面建立农产品质量安全监管机构,村村配备协管员。省级财政共投入资金1.34亿元,扶持乡镇添置必要的检验检测、执法取证等设备。目前全省共有监管员5304名,村级协管员1.6万名,每镇都配有2套以上检测仪器,为日常监管提供保障。

建立有效监管制度。围绕“谁来管、管什么、怎么管、管得怎么样”等几大问题,制定全省基层网格化监管工作方案,全面推行“定对象、定人员、定任务,业绩考核”(三定一考核)的网格化监管模式。

创新监管信息化手段。充分利用移动互联网技术,注重顶层设计,建成覆盖省市县乡四级的农产品质量安全信息化监管系统,配套开发移动监管APP,实时上传监管记录,促进各项监管措施落地生根。

目前,全省13个市、86个县(市、区)和963个乡镇已纳入系统运行,建立监管对象电子信息2.4万条,2015年上传督查巡查记录5.5万条、速测筛查记录11.6万条、宣传培训记录4200多条,产品速测记录65.7万批次。

大数据技术应用于风险管控中

近年来,江苏省不断加大经费投入,充实检测人员,提升全省农产品质检机构检验检测能力和水平,持续加大农产品质量安全抽检力度。目前全省市、县农产品质检机构已有80%通过机构考核和计量认证,检测人员达700多人。2015年,省市县三级农业部门共定量抽检各类农产品8万批次,为农产品质量安全科学监管提供重要依据和参考。

江苏省加强检测数据资源共享,强化检测结果应用。引入GIS和云计算技术,加强对省市县三级各类检测数据的统计分析和预警研判。已基本实现了抽样信息PDA现场完成、采样点位GPS信息自动采集、各级检测数据自动上传、检测结果自动判定,不同时期、不同产品、不同地区的产品质量状况的自动分析,为及时发现问题,消除可能存在的系统性、区域性、行业性风险隐患打下了坚实基础。

信息技术应用于农产品质量安全执法领域

2015年,江苏省把农业执法信息化建设作为国家和省级农产品质量安全县创建的重要内容,要求安全县率先推进执法监管智慧化。

系统功能以农业投入品和农产品质量安全执法监管为重点,主要包括投诉举报和督办管理、日常检查管理、质量监督抽查、案件管理等模块,目前已进入调试阶段。通过该系统的开发和应用,将打破农产品质量安全执法“信息孤岛”,强化信用监管,解决执法过程中可能出现的“任性检查”“人情监管”和“执法扰民”等问题,大幅度提升农产品质量安全执法监管效能。同时,江苏省加快“农资溯源网”试点应用,在全省6个县开展农业投入品监管追溯试点工作,依托“农资溯源网”,选择农资生产企业、批发商和乡镇经销商作为试点单位,配备用户追溯终端,完善农业投入品经营电子档案,有效解决农业投入品“从哪里来、到哪里去”的问题。

信息技术应用在追溯管理中

友情链接