你好,欢迎访问云杂志! 关于我们 企业资质 权益保障 投稿策略
当前位置: 首页 精选范文 经济增长的来源

经济增长的来源范文

发布时间:2023-10-09 15:03:48

导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的13篇经济增长的来源范例,将为您的写作提供有力的支持和灵感!

经济增长的来源

篇1

改革开放30多年来,我国经济实现了举世瞩目的高速增长,为全面建成小康社会和实现现代化奠定了坚实的基础。研究表明,在引致经济增长的各种生产要素中,一方面,资本投入的增加是拉动我国经济增长的最主要因素。从总体上看,对于一个国家或地区的经济增长而言,资本形成是引擎,资本的效率则是关键。改革开放初期,和绝大多数发展中国家一样,资本稀缺是中国经济增长与发展的最主要障碍,改革开放政策不仅动员了国内储蓄,激活了储蓄转化为投资的资本形成机制,提高了微观层面的资本效率;而且通过廉价的土地供给和优惠的税收政策,吸引外国资本与国内廉价的劳动力资源相结合,促进了外向型经济发展,提高了经济增长的速度。可以说,国内资本的加速形成和国外资本的大规模流入,加上资本效率一定程度的提高,是30多年来我国经济增长的最大动力。随着改革开放的进一步深入,我国经济增长与资本形成表现出非均衡性;另一方面,在短期内,就业增长与中国经济之间表现出非一致性,而这似乎背离了传统经济理论带给人们的一贯认识:“就业增长意味着经济增长。”那么究竟就业与经济增长是何种关系?本文通过计量实证分析发现就业增长与经济增长在短期内并不存在必然的一致性,主要表现在劳动要素对经济增长的贡献率低,相反在长期均衡时间内却保持了一致性,经常保持在1:2的要素贡献率,继而提出政府不能把劳动力要素的投入当作是使经济增长的充分条件,最后提出目前我国政府在宏观经济政策上应该实现从就业带动增长到就业与经济增长协调发展的转变,来促进经济增长的对策建议。因此,分析资本形成、就业人员人数与我国经济增长的关系,解释经济增长的资本因素和劳动力因素,无论在理论上还是在实践上都具有重要意义。

1文献回顾

自20世纪90年代以来,已经有一些研究对于生产两要素与经济增长的关系进行了考察。林毅夫(2001)以1981―2010年GDP增长率、资本效率等统计数据,通过国民收入恒等式考察了资本形成和就业人口对经济增长的贡献程度。他通过深入探讨资本形成和就业人数两个变量的性质,使用多种联立方程估计方法,包括普通最小二乘法(OLS)、两阶段最小二乘法(2SLS)、三阶段最小二乘法(3SLS)、似不相关估计(SUR)、有限信息普通最小二乘法(LIML)和完全信息普通最小二乘法(FIML),以根据不同估计方法估计结果所提供的信息来判断最佳的估计方法。根据林毅夫的估计结果,在上世纪90年代国内生产总值对两要素的弹性数值大致在0.5左右。该弹性数值在上世纪80年代则相对较低,可能主要是因为两要素占国内生产总值的比例随着时间的变化有增长的趋势。两要素占国内生产总值比例的增加必然增加两要素变动对经济增长影响的程度。陈东平(2001)通过使用中国1980―1998年的国民收入、资本存量、劳动力总数、进出口总额等数据,用实证分析的方法探讨了进口、出口以及劳动和资本对我国经济增长的作用,得出了进口、出口以及劳动和资本的边际产出,通过实证分析得出资本形成对经济增长的作用远远大于就业人数。

本文根据1981―2013年中国的经济数据,通过使用协整模型对两生产要素与经济增长关系进行Granger因果关系检验,分析中国进出口与经济增长之间是否存在协整关系,在存在协整关系的情况下,使用误差修正模型来分析资本投入与劳动投入对产出的长、短期弹性,从而判别哪种生产要素对经济增长的解释能力更强。

2实证分析

本文分析所使用的样本取自1981―2013年的年度数据,数据来源于《国家统计局》。用从业人员(L/万人)、资本形成(K总额/亿元)来反映生产要素的投入;使用宏观经济总量指标国内生产总值(GDP/亿元)反映经济增长。我国GDP、从业人员、出口总额(EX)与资本形成如表1所示。

对因变量和自变量取对数,考察lnGDP,lnK,lnL即经济增长率、资本形成总额的增长率,从业人员增长率之间的协整关系,首先利用EViews软件输入样本数据GDP、L和K,生成新序列lnGDP、lnK和lnL,然后依次对时间序列数据进行单位根检验:

表11981―2013年我国GDP、资本形成总额K

t-StatisticProb.*Augmented Dickey-Fuller test statistic-1.423358 0.5576Test critical values:1% level-3.6701705% level-2.96397210% level-2.621007GDPt-1系数的τ值为-1.4234,这个值在绝对值上甚至远低于显著性水平为10%的临界值τ-26210,从而表明,即便考虑了误差项中可能出现的自相关,lnGDP序列仍是非平稳的。

其次,对lnGDP的二阶段差分做单位根检验,检验结果见表3。

表3单位根检验结果

t-Statistic Prob.*Augmented Dickey-Fuller test statistic-5.269919 0.0002Test critical values:1% level-3.6793225% level-2.96776710% level-2.622989检验结果如表3所示,可见d(lnGDP)是平稳的,因此lnGDP是二阶段单整的。

(2)对lnK进行单位根检验,首先我们用lnK的两个滞后差分对lnK序列估计,使用上述数据估计结果如下:

ΔlnKt=0.1376-0.0043lnKt-1+0.4633ΔlnKt-1

Eviews运行结果如表4所示。

表4Eviews运行结果

t-Statistic Prob.*Augmented Dickey-Fuller test statistic-0.442211 0.8895Test critical values:1% level-3.6616615% level-2.96041110% level-2.619160lnKt-1系数的τ值为-0.4422,这个值在绝对值上甚至远低于显著性水平为10%的临界值τ-26192,从而表明,即便考虑了误差项中可能出现的自相关,lnK序列仍是非平稳的。

其次,对lnK的二阶段差分做单位根检验,检验结果见表5。

表5单位根检验结果

t-Statistic Prob.*Augmented Dickey-Fuller test statistic-5.979837 0.0000Test critical values:1% level-3.6701705% level-2.96397210% level-2.621007检验结果如表5所示,可见d(lnK)是平稳的,因此lnK是二阶段单整的。

(3)对lnL进行单位根检验,首先我们用lnL的两个滞后差分对lnL序列估计,使用上述数据估计结果如下:

ΔlnLt=0.8054-0.0710lnLt-1

Eviews运行结果见表6。

表6Eviews运行结果

t-Statistic Prob.*Augmented Dickey-Fuller test statistic-3.053459 0.0406Test critical values:1% level-3.6537305% level-2.95711010% level-2.617434lnLt-1系数的值为-3.0535,这个值在绝对值上甚至远低于显著性水平为1%的临界值τ-3.6537,从而表明,即便考虑了误差项中可能出现的自相关,lnL序列仍是非平稳的。

其次,对lnL的二阶段差分做单位根检验,检验结果见表7。

表7单位根检验结果

t-Statistic Prob.*Augmented Dickey-Fuller test statistic-6.409917 0.0000Test critical values:1% level-3.6793225% level-2.96776710% level-2.622989检验结果如表7所示,可见d(lnL)是平稳的,因此lnL是二阶段单整的。

(4)综上可见,lnGDP与lnK、lnL都是二阶单整的,可能存在协整关系,做lnGDP关于lnK、lnL的OLS回归,消除自相关性后得回归结果如表8所示。

表8消除自相关性后得回归结果

CoefficientStd.Errort-StatisticProb. LNK0.5977950.0758227.8841530.0000LNL0.5430350.1334764.0683970.0004AR(1)1.1272080.1938525.8147800.0000AR(2)-0.1566530.192565-0.8135060.4230根据输出结果,可得lnGDP与lnK、lnL的长期平均均衡表达式:

lnGDPt=0.5978lnKt+0.5430lnLt

(7.8842)(4.0684)

从表8回归结果看,回归系数全部通过t检验,不存在自相关。

(5)根据表8的回归结果计算残差序列e,对其进行ADF检验,得表9残差序列检验结果。

表9残差序列检验结果

t-Statistic Prob.*Augmented Dickey-Fuller test statistic-5.451514 0.0001Test critical values:1% level-3.6701705% level-2.96397210% level-2.621007从回归结果可知残差项是平稳的。因此,可得出lnGDP与lnK、lnL存在协整关系。基于上述协整分析我们可以认为中国的经济增长与对两生产要素之间存在着长期的因果关系,根据格兰杰表述定理:若两种变量(Xt和Yt)是协整的并且每个都是非平稳的时间序列,那么,要么Xt一定是Yt格兰杰原因,要么Yt一定是Xt的格兰杰原因。在本文中,至少能说明两种生产要素的投入是我国国民经济发展的内在动力所在。表2-表8回归结果也表明,本期从业人员每增长1%时,我国国内生产总值将平均增长0.543%;资本形成总额每增长1%时,国内生产总值将平均增长0.598%。

(6)接下来分析短期两要素对经济增长的影响,利用EViews软件建立lnGDP关于lnK、lnL的误差修正模型ECM。以滞后一期残差项作为误差修正项,可建立如表10所示的误差修正模型。

表10误差修正模型

R2=0.6920d=1.7727F=17.2895

模拟拟合优度较高,方程通过F检验、DW检验,各回归系数符合经济意义,其中,d(lnK)、d(lnGDP(-1))在1%水平上显著,d(lnL)、RESID(-1)不显著,其中变量的符号与长期均衡关系的符号一致。结果表明,本期lnK、lnL和上一期lnGDP在短期内每增长1%,GDP将依次增长0.0493%、0.3716%和04986%。误差修正项系数为负,符合反向修正机制,它表明lnGDP与长期均衡值得偏差中的27.21%被修正。此ECM模型反映了lnGDP受lnK、lnL影响的短期波动规律。根据估计结果可知,资本投入与劳动投入对产出的长期弹性分别为0.598和0.543,短期弹性分别为0.372和0.050。

篇2

中图分类号:F061.2 文献标志码:A 文章编号:1674-8131(2012)01-0067-07

An Improvement of Analysis Methods for

Economic Growth Rate and Its Sources

―Solow Growth Calculation Model with Regional Weight and Its Empirical Analysis of China

CHANG Jianxina,b, YAO Huiqinb, LI Dandana

(a.School of Economics and Management; b. Center for Studies on China Western

Economic Development, Northwest University, Xi’an 710127, China)

Abstract: When previous scholars analyzed regional or national economic growth rate and their sources, they usually used Solow Growth Calculation Model to obtain mean value by making brief sum of economic growth rate and its sources of all regions but overlooked its proportion of each region to all regions or the whole country. Based on the related income function theory, when regional or national economic growth rate and its sources are analyzed, economic growth rate and its sources of each region should be calculated by weight and Solow Growth Calculation Model should be improved on the level of decision unit, subset and sylloge to get the proportion of regional total output to the output of all regions or the whole country on theoretical basis and by method of weight. According to the improved Solow Growth Calculation Model, this paper makes empirical analysis of China’s economic growth rate and its sources since 2000, the results show that GDP growth rate is higher from the calculation by improved Model than by original Model and that labor contribution rate and TFP contribution rate are significantly underestimated for west regions of China but capital contribution rate is highly estimated by unimproved Model.

Key words: economic growth rate; economic growth source; Solow Growth Calculation Model; income function; regional weight; total output proportion

一、引 言

对经济增长率及其来源的分析一直是经济增长理论研究的重要内容,1957年美国经济学家罗伯特・索洛(Robert M. Solow)在其名著《技术变化与总量生产函数》中基于柯布-道格拉斯生产函数首次提出了经济增长因素分析的增长核算模型。索洛将技术进步纳入生产函数中,在把资本增长和劳动增长对经济增长的贡献剥离以后,剩余部分归结为广义的技术进步,定量分离出了技术进步在经济增长中的作用,这便是著名的“索洛余值”,从而使人们能分析出经济增长率及其来源。自从索洛增长核算模型诞生以来,由于其简单易于测算且合乎经济原理,被国内外众多学者应用到行业、地区以及国家的经济增长率及其来源的分析中。

常建新,姚慧琴,李丹丹:经济增长率及其来源分析方法的新改进

但是,在梳理以往学者对于行业、地区以及国家的经济增长率及其来源分析的研究文献时我们发现,国内外学者在测算出各个地区的经济增长率及其来源后,当分析层面上升到区域或国家时,仅仅是将各个地区的经济增长率及其来源简单加总取均值来表示区域或国家的经济增长率及其来源,或者是更加简单地将各个地区的GDP、资本和劳动力的数据加总到区域或国家层面后进行测算得到区域或国家的经济增长率及其来源。以我国学者为例,邓翔等(2004)和高帆(2010)等学者在测算得到各个省、直辖市和自治区的经济增长率及其来源后,进行简单加总取均值后得到东部、中部和西部地区的经济增长率及其来源,并进一步将东部、中部和西部地区的经济增长率及其来源再进行简单加总取均值得到我国总体的经济增长率及其来源。胡雪萍等(2011)将中部6省的GDP、资本和劳动力的数据进行加总测算得到中部地区的经济增长率及其来源。沈坤荣(1999)、陈琳(2008)和彭方志等(2010)则是将我国各个省、直辖市和自治区的GDP、资本和劳动力的数据加总后测算得到我国总体的经济增长率及其来源。

综上所述,这些常用的处理方法的优点就是简单,且在一般的假设条件下具有统计性的描述特征。但是我们知道每个地区的生产技术特征和资源禀赋是不同的,因此,每个地区的经济增长率及其来源在区域或国家层面都有不同的占比,而这种简单的处理方法却忽略了这一比重。为了弥补这个不足,国外学者Kumar等(2002)以及我国学者熊俊(2005)等提出使用地区的加权平均值来表示区域或国家的经济增长率及其来源,并且将权重选择为每个地区的总产出占整个区域或国家总产出的比重。但是,这种权重选择的问题在于其仅仅是一种直觉,在理论上不能解释为什么权重必须是产出比重而不能是别的什么。经济增长率分解为不同的部分――资本贡献度、劳动力贡献度等,因此,很自然就会想到一个问题,权重为什么必须是产出比例,而不是资本比例或是劳动力比例呢?

为了解答这个疑问,本文在Koopmans(1957)的收入函数理论以及Fare等(2003)和Simar等(2007)拓展后的收入函数理论基础上对索洛增长核算模型进行改进,以期能给出权重选择的理论依据和证明,并应用改进后的索洛增长核算模型对2000年以来我国总体以及各个区域的经济增长率及其来源进行分析。

二、索洛增长核算模型的改进

1.决策单元的经济增长率及其来源的表示方法

(15)式同样表明,总集C经济增长率的来源(即各投入要素和TFP对经济增长率的贡献度) 同样也是这个集合中所有子集L经济增长率来源的加权平均,而这种权重同样也是在t时期总集C中每一个子集L的总产出占总集C总产出的比重。

三、我国经济增长率及其来源分析

进入21世纪,尤其是2001年加入世界贸易组织以来,我国进入了快速发展的黄金10年,整体经济的增长表现为各个省、直辖市和自治区的增长,但这一增长奇迹的背后靠什么力量支撑和推动?各地区的增长差异是由要素投入的差异引致,还是由生产率变动造成?这些是我们必须认真探究和回答的问题。因此,正确地分析这10年来我国的经济增长率及其来源,对于我国经济政策的调整有着重要的意义。

在这一部分中,我们以我国内地30由于的数据不全,故将其舍去。 个省、直辖市和自治区来代表决策单元,以东、中、西三大区域本文按照我国传统三大经济带的划分方法进行划分,其中东部地区包括:北京、天津、河北、辽宁、上海、江苏、浙江、福建、山东、广东和海南11个省、直辖市;中部地区包括:山西、吉林、黑龙江、安徽、江西、河南、湖北和湖南8个省;西部地区包括:重庆、四川、贵州、云南、、陕西、甘肃、青海、宁夏、新疆、广西和内蒙古12个省、直辖市和自治区。 来代表子集,以我国总体来代表总集,采用改进后的索洛增长核算模型来对我国的经济增长率及其来源进行分析。同时,为了对索洛增长核算模型改进前和改进后的结果做一对比,本文也采用了改进前的模型测算了我国的经济增长率及其来源。

1.指标选取和说明

根据研究的需要,本文选取了我国30个省、直辖市和自治区2000―2010年间国内生产总值(GDP)、资本存量和劳动力的样本数据。其中,用GDP的增长作为衡量经济增长的指标,并利用相关各年的国内生产总值指数将其折算成了以2000年为基期的可比数据。对于资本存量,我国学者张军等(2004)利用永续盘存法对我国1952―2000年的省际物质资本存量进行了测算,本文在其研究的基础上,以2000年为基期采用“趋势外推法”推算出2000―2010年我国30个省、直辖市和自治区的资本存量。对于劳动投入量,本文用2000―2010各年年末就业者人数来衡量。本文所用数据均来源于《中国统计年鉴》(2001―2011)。

2.实证结果和分析

根据第二部分所介绍的改进前和改进后的索洛增长核算模型,本文利用SPSS19.0软件测算了2000――2010年我国总体及三大区域的经济增长率以及劳动力、资本和TFP对经济增长率的贡献度和贡献率。具体分析结果见表1。

根据表1所示,改进前和改进后的索洛增长核算模型测算得到的我国总体和各个区域的经济增长率及其来源差异非常明显。从我国总体层面来说,改进前较改进后低估了我国总体的GDP增长率,并且低估了劳动贡献率和TFP贡献率,但却高估了资本的贡献率。从我国区域层面来说,改进前的模型均低估了我国三大区域的GDP增长率,其中,西部地区的差距最大。改进前对于东部地区和中部地区经济增长率来源的分析较改进后差距比较小;但是对于西部地区,改进前则显著低估了劳动贡献率和TFP贡献率,但却较大程度地高估了资本的贡献率。

与邓翔等(2004)采用改进前的索洛增长核算模型测得的1978―2003年我国总体和三大区域的经济增长率及其来源的结果相比较,本文采用改进前的模型测得的结果也有非常大的差异本文对于我国东、中、西三大区域的划分方法与邓翔等(2004)的划分方法完全一致。 。其中,本文测得的我国总体和东、中、西三大区域的TFP贡献率为5.51%、8.98%、5.55%和1.24%,较邓翔等(2004)所测得的TFP贡献率(39.67%、34.90%、43.21%和41.62%)有了非常大的下降趋势;但本文测得的资本贡献率为87.93%、83.42%、88.47%和92.92%,较邓翔等(2004)所测得的资本贡献率(42.50%、44.91%、41.54%和40.85%)有了大幅度的上升;而劳动贡献率的差距不大。这一对比说明,2000年以来(尤其是2004年以来)我国经济增长中资本的拉动作用有了非常大的提升,而反映技术进步和经济增长质量的TFP贡献率却有了非常大的下降趋势。

分析改进后测算得到的我国总体和各个区域的经济增长率及其来源结果,我们发现,进入21世纪以来我国经济保持了持续而高速的增长趋势,而这10年也正是国家实施西部大开发战略的10年,西部地区的GDP增长率明显高于东中部地区和全国水平。并且值得注意的是,西部地区经济增长中劳动贡献率和TFP贡献率较东中部地区和全国水平的大,资本的贡献率却小很多。这一结果说明,西部大开发战略实施十年以来,西部地区在后发优势作用的推动下生产技术有了大幅的提升,经济增长的质量有了明显的提高。

四、总 结

大多数学者在分析区域或国家的经济增长率及其来源时,仅仅是将采用索洛增长核算模型测算得到的各个地区的经济增长率及其来源简单加总取均值,但是由于每个地区的生产技术特征和资源禀赋的不同,这种简单的处理方法忽略了各个地区占整个区域或国家的比重。本文在收入函数相关理论的基础上,从决策单元、子集和总集的层面对索洛增长核算模型进行了改进,给出了地区权重存在的理论依据和证明。我们发现,在分析区域或国家的经济增长率及其来源时,需要对各个地区的经济增长率及其来源进行加权处理,而这种权重便是地区总产出占整个区域或国家总产出的比重。

根据改进后的索洛增长核算模型,我们测算了进入21世纪以来我国总体和三大区域的经济增长率及其来源,并且同时用改进前模型进行了测算。经过对比我们发现,改进后的测算结果较改进前GDP增长率有了一定的提高;而对于西部地区,改进前显著低估了劳动贡献率和TFP贡献率,但却较大程度地高估了资本的贡献率。同时,将改进前测算的结果与有关文献比较,我们发现,2000年以来(尤其是2004年以来)我国经济增长中资本的拉动作用有了非常大的提升,而反映技术进步和经济增长质量的TFP贡献率却明显下降;但西部地区在后发优势作用的推动下生产技术有了大幅的提升,经济增长的质量有了明显的提高。

参考文献:

陈琳. 2008.改革以来中国经济增长因素的分析及测算[J].经济经纬(3):2427.

邓翔,李建平.2004.中国地区经济增长的动力分析[J].管理世界(11):6876.

高帆.2010.中国各省份经济增长的因素分解与劳动结构效应:1978―2007年[J].数量经济技术经济研究(7):2137.

胡雪萍,李丹青. 2011.中部地区经济增长因素的实证分析――基于1978―2009年的时间序列数据[J].山西财经大学学报(2):1722.

彭方志,胡松明. 2010.基于新增长模型的90年代以来中国经济增长因素分析[J].开发研究(1):14.

沈坤荣.1999.1978―1997年中国经济增长因素的实证分析[J].经济科学(4):1525.

熊俊. 2005.经济增长因素分析模型:对索洛模型的一个扩展[J].数量经济技术经济研究(8):2635.

张军,吴桂英,张吉鹏.2004.中国省际物质资本存量估算:1952―2000[J].经济研究(10):35-44.

FARE R,ZELENYUK V. 2003. On Aggregate Farrell Efficiency Scores[J]. European Journal of Operational Research,146(3):615-620.

KOOPMANS T C. 1957. Three Essaya on the State of Economic Analysis[M]. .New York:McGrawHill.

KUMAR S,RUSSELL R R. 2002. Technological Change, Technological Catchup,and Capital Deepening Relative contributions to Growth and Convergence[J]. Review of Economic Review,92(3):527548.

SOLOW R M. 1957. Technical Change and the Aggregate Production Function [J].Review of Economic Review,39.

篇3

就吉林省而言,能源资源的总体情况是资源能源的种类较多,但就已探明的储量看,仍属于能源资源欠丰富地区,能源自给能力严重不足。煤炭、石油、天然气、油页岩都有一定储量,水电资源也较丰富,特别是油页岩储量丰富,占全国的56%,居全国之首,但绝大部分尚待开发利用。近年来能源工业有一定的发展,但受能源资源、开发能力、资金、技术等方面的制约和限制,吉林省能源生产总体上呈低速增长的态势,能源工业供给能力不能适应国民经济不断增长的需求。据统计,2003年,吉林省能源生产总量4456.82万吨(折标准煤,下同),比1999年增长29.1%,年均增长2.0%,低于全国同时期能源生产年均增长幅度2.1个百分点;而此间全省生产总值(GDP)增长了2.3倍,年均增长10.4%,能源生产的增长速度明显低于生产总值(CDP)的增长速度。同时,在机械化、电气化、自动化的生产过程中,都需要消耗相当数量的能源,对能源的需求不断增长。

二、经济增长与能源的联系

传统的经济学理论认为经济增长取决于劳动的投入量变动、资本的投入量变动和技术进步,也就是说,经济增长可以归结为生产要素的增长和技术进步水平。

自上世纪70年代石油危机发生以后,能源对西方各国经济增长产生了极大的负面影响,能源与经济增长的关系受到世界各国的普遍关注,由于能源在经济增长中的作用越来越突出,国内外学者认为能源是和劳动、资本一样在生产中都是不可缺少的一个重要变量,因而,将能源作为经济变量引入到科布-道格拉斯生产函数当中,为分析能源与经济增长的内在联系提供了一种新的途径。具体表达式如下:

设:生产函数为Y=ALαKβRγ

式中:Y代表总产出(GDP),L代表劳动投入量,K代表资本投入量,A代表技术状况,R代表能源投入量,α、β、γ分别为劳动、资本和能源的产出弹性。

研究结果表明:在L、K、R当中,如果存在相互替代的可能性,则生产函数要发生不同的响应,当其他变量保持不变时,任何新的投入都将导致生产函数的变化。也可以说,经济增长受能源投入量的影响,随着经济增长速度加快,对能源需求量也是在快速增加的;同时,经济增长也促进了能源生产速度的加快。

三、经济增长与能源供求关系

(一)能源需求分析

从经济增长与能源的需求方面看,经济的高速增长,将大大刺激能源需求量的增长。以吉林省为例,万元GDP综合能耗为1.98吨标准煤,2004年GDP为2958.21亿元,能源投入约为5857.26万吨标准煤,如果在节能技术水平不变且保证经济增长不低于9%的前提下,那么,年能源需求总量将会继续与GDP同步增加。在能源的需求结构中,2003年煤炭消费总量占全省能源消费总量的72.3%。在能源终端消费中, 2003年全省煤炭直接消费1474.54万吨,占全省能源终端消费总量的43.2%,天然气、煤气和石油液化气等清洁能源的消费量为128.63万吨,仅占全省能源终端消费总量3.77%。值得注意的是,随着居民收入水平的提高,居民煤炭消费收入增长弹性值会下降,而电力、煤气、液化石油气消费收入增长弹性值将会上升,居民的能源消费结构将产生新的变化,这将导致吉林省整个能源需求结构的变化。也就是在对煤炭消费需求增加的同时,清洁能源需求增加的幅度要大于煤炭消费需求增加幅度。

(二)能源供给分析

从经济增长与能源的供给方面看,吉林省境内能源资源较多,煤炭、石油和天然气都有一定储量,但不能满足本省经济增长的需要。2001年末,全省可利用的煤炭地质储量20.5亿吨,其中工业储量15.9亿吨,可采量10.6亿吨。全省核定煤炭生产能力约为1649万吨。预计2005年核定矿井生产能力为1418万吨,2010年为1453万吨。从近几年的煤炭产量看,吉林省煤炭产量总体呈下降趋势。

(三)经济增长与能源供求缺口分析

为了保持经济的高速增长,吉林省今后对能源的需求总量约为6000万吨,而能源的供给总量约为3000万吨,供求缺口约为3000万吨。经济增长与能源的矛盾将日显突出,能源供求格局将不断变化。其原因主要有:

第一,从我国的宏观经济发展层面看,西部大开发、振兴东北老工业基地、中部崛起等战略的实施,必然带动整个经济的高速增长。能源需求总量将迅速增加。据中国科学院国情分析研究小组预测,到2020年我国能源消费总量将达到28亿吨标准煤,为1995年的2.17倍,原煤消费量为24亿吨,为1995年的1.86倍,年平均增长率为 2.51%,原油消费量将达到4.35亿吨,为 1995年的2.90倍,年平均增长率为 4.35%,天然气需求量将达到1420亿立方米,为1995年的7.93倍,年平均增长率为 8.64%,电力消费将达到4.8万亿度,为 1995年的4.76倍,年平均增长率为 6.44%。这表明随着我国GDP成10倍增长,能源消费总量成2倍多增长,特别是原油、天然气和电力消费需求量成3-8倍增长。可见,对能源的需求增加是整个宏观经济增长的必然结果,如果能源供给增长速度滞后于需求增长速度,供求缺口会进一步加大。

第二,从吉林省经济发展的层面看,吉林省的经济增长速度高于全国的经济增长水平,省内的能源供给量远不能满足自身经济增长的需求量,能源供求矛盾会进一步加剧,大量能源需从外省购入。而作为能源主产地的山西、内蒙古和黑龙江等省份在全国经济增长和生产能力有限的前提下,能源供给压力也会增大。因为这些省份面临双重供给问题,一是必须满足自身经济增长能源需求的供给;二是对外省经济增长能源需求的供给。从去年的能源供应情况中可以看出,供不应求的局面必然出现,并伴随着能源的价格上升,供求缺口会继续增大。另外,大量能源从外省购入,在运输能力上也会受到限制,必然使能源的成本上升,能源供给就会成为吉林省经济发展的“瓶颈”,如能源供给不能保证,将会直接影响经济增长的速度。

四、解决未来经济发展对能源需求的几点建议

能源、经济与环境的协调发展,是中国实现现代化目标的重要前提。发展循环经济是实现持续发展的必由之路。循环经济以资源的高效利用和循环利用为核心,以“减量化、再利用、资源化”为原则,以低消耗、低排放、高效率为基本特征,能够大大提高社会经济活动的生态效率,实现经济、社会和环境效益的统一,符合可持续发展的经济增长模式,也是对“大量生产、大量消费、大量废弃”传统增长模式的根本变革。发展循环经济,既是科学发展观的具体体现,也是实现科学发展观的必然选择。

1.提高能源利用率,控制能源需求,节约不可再生能源

能源是实现一个国家或地区国民经济持续发展和社会进步必须的保障。要正确认识经济增长与能源之间的关系,重视能源缺口对经济增长的制约作用。目前,我国单位产值能耗比世界平均水平要高2.4倍;我国每万美元产值消耗的铜、铝、铅是日本的7倍、美国的6倍;我国单位GDP二氧化硫排放量是日本的68倍、美国的6倍。2003年我国实现的GDP约占世界 GDP的4%,但消耗的原油、原煤、铁矿石却分别为世界消耗量的7.4%、31%、30%。我国能源效率为30%左右,比发达国家低 10多个百分点,终端能源效率为41%,也比发达国家低10多个百分点。吉林省的能源效率比全国平均水平还要低。因此,应该在全省范围内,对高能耗的生产企业,进行综合治理,应用成熟的能源创新技术,降低生产过程中的能源消耗,提高能源使用效率,缩小能源供求缺口。寻求新的国际能源合作目标,统筹安排,放眼国内、国外能源市场,制定能源保障规划,增加国际能源合作路径,提高能源安全水平,降低能源风险,缓解资源保障压力、供需平衡压力、生产供应压力,防止能源不足造成经济增长下降情况发生。

2.通过科技进步,不断创新,保证能源多样性,减少环境污染,实施绿色能源战略

吉林省常规能源的储量低于全国的平均水平,但在其它能源储量上有自己的优势和潜力。例如,油页岩有较大的开发潜力。据国土资源部门勘测,吉林省油页岩预测资源储量2542.9亿吨,查明资源储量 174.26亿吨,居全国第1位。因此,立足省内,开发新能源,对解决能源供求缺口,将起到重要作用。风能、太阳能、生物质能等新的可再生能源,具有清洁、无污染、可再生的特点,符合可持续发展的要求。吉林省风能、水能、太阳能和生物质能等再生能源也有较大开发潜力。西部白城、松原地区风力资源较为丰富,东部的水资源较为丰富,中部的生物质能资源亦很可观。可因地制宜,开发可再生能源。例如,在白城和松原地区建立小型风力发电站,在东部建立水力发电站,在农村发展循环经济,利用农作物、水生植物、人畜粪便等有机废物开发生物能源。可再生能源的开发和利用,对于补偿能源供求缺口也有积极的作用。

3.提供政策支持,建立使用监督机制

实施节约型能源战略的关键是要有一套严格的监督机制,把不可再生能源的节约和新型能源的开发作为未来经济发展战略的重要组成部分。为此,政府应制定相应的政策和制度,改善产业结构和产品结构,引导、鼓励企业和消费者开发、使用绿色能源,抑制无效、低效的能源消费。同时,对能源资源的开采应加大管理力度,以制止无序开采,减少浪费。

篇4

中图分类号:F127 文献标识码:A

文章编号:1004-4914(2012)04-212-03

一、引言

宁波是一个港口城市,社会经济增长很大程度上依赖港口的发展水平。为了促进宁波社会经济发展转型升级,宁波市委、市政府提出了“六个加快”重要战略。“六个加快”是宁波市委、市政府深入贯彻落实科学发展观、推进“十二五”时期全市经济社会发展的重大战略。其中加快打造国际强港处于“六个加快”的首要地位,这充分说明在“十二五”期间港口在宁波经济发展中的重要意义。

宁波港口投资近年来主要表现为三个特点:首先,宁波港口投资的比重较大,特别是最近10年以来逐年增长趋势更为明显。其次,与以往相比,“十二五”期间港口投资项目数更多,投资额更大。再次,随着港口投资的加大,港口的货物吞吐能力也在不断加强。其临港优势带动了临港工业、口岸贸易及其服务业的发展,解决了很多社会就业、增加了政府的财政收入,对整个社会的经济发展产生了比较大的推动作用。然而,很多人认为宁波港口投资产生的带动作用已经到了增长极限,港口设施、设备利用率较低,港口投资可以维持现状转而加快发展临港工业和服务业。宁波市的港口投资带动的经济增长是否到了极限呢?港口投资还能带动经济增长吗?及其作用机制是什么?这些问题都有待于深入研究,一方面可以检验港口投资在港口城市经济增长中的重要作用,另一方面可以为今后港口投资实践与制定投资政策提供理论指导。

二、理论分析与研究假设

本研究所采用的理论模型主要来源于索洛(Solow)于1956年提出的经济增长模型,假定了一个两要素生产函数:

Y=F(K,L)=AKαLβ(1)

其中K为资本,L为劳动力,Y表示产出,α、β分别是资本和劳动力的产出弹性。从(1)式可以看出,在索洛模型中,港口投资与其他投资被看作是同质的要素纳入资本变量K中,而且索洛模型没有考虑技术进步对产出的影响。为了解释持续的经济增长,需要考虑长期使要素生产率增加的外部因素。因此,在(1)式中纳入时间因素,则:

Y=F(K,L,tt)=eλtAKαLβ(2)

(2)式中,e为自然对数的底,t表示时间;其他与(1)式定义相同。实际上,引入时间因素后,即将技术进步、产业结构变动、制度变迁等因素全归于时间系数λ,因此,eλt成为全要素生产率,λ为全要素生产率的增长率。对(2)取对数形式并添加随机变量,可得:

Ln(Yt)=λt+αLN(Kt)+βLn(Lt)ut(3)

其实,模型(3)中假定港口投资与其他非港口投资为同质资本与港口城市的现实经济状况不符合。事实上,自1978年改革开放以来,港口城市的投资总额显著比非港口城市高,为了研究港口投资在社会经济发展中的作用,城市总资本水平定义为港口投资与非港口投资的加权平均,数学形式表达式为:

K=KpγKn1-γ(4)

其中K、Kp、Kn分别表示城市的总资本水平、港口投资和非港口投资,γ表示港口投资在总资本构成中的权重。把Kp、Kn纳入生产函数的投入变量,模型如下:

Y=f(Kp,Kn,l,t)=eλtKpαγKnα(1-γ)Lβ(5)

取对数并增加随机变量得到:

Ln(Yt)=λt+αγLn(Ktp)+βLn(Lt)+α(1-γ)Ln(Ktn)+ut(6)

本研究也采用柯布―道格拉斯(Cobb-Douglas)函数对研究结论进行稳健性检验,该模型与索洛模型具有差不多的形式,只是没有考虑到技术进步等因素对产出的影响。其模型如下:

Y=ALαKβeε(7)

对于此类非线性函数通常的处理办法是转化为线性模型进行参数估计,在模型两端取对数转化为如下形式:

LnY=LnA+αLnL+βLnK+ε(8)

其中K为资本,L为劳动力,Y表示产出,α、β分别是资本和劳动力的产出弹性。与以上对索洛模型的转化方式类似,把资本分为港口投资与非港口投资两部分,(8)可以转化为:

Ln(Yt)=αγLn(Kpt)+βLn(Lt)+(1-γ)Ln(Ktn)+εt(9)

基于以上理论推导,本研究以宁波市1985-2010年的时间序列为样本,在索洛(Solow)模型和柯布-道格拉斯(Cobb-Douglas)的基础上构建本研究的理论模型,研究港口投资对经济增长的影响及其作用机制。本研究提出如下假设:港口投资与经济增长正相关;而且,港口物流能力是港口投资影响经济增长的作用机制之一。

三、样本选择、数据来源与研究变量界定

本研究以宁波市1985年-2010年的时间序列为研究样本,跨度26年,其中经济增长、社会固定资产总投资等数据来源于1985年-2011年《宁波统计年鉴》;港口货物吞吐量数据来源于历年《宁波交通统计年鉴》;1985年-1988年全社会从业人员数据来源于《宁波奋进四十年(1949-1989)》,1989年-2010年全社会从业人员数据来源于历年《宁波统计年鉴》;港口投资数据来源于《宁波港年鉴》和历年《宁波交通统计年鉴》,其中包括基建项目、技改项目和合资项目的投资总额。

本研究所使用的变量包括经济增长(GDP)、社会总投资(K)、港口投资(GK)、非港口投资(OK)、劳动力(L)和物流能力(WL),其中拓展后的索洛模型中使用时间(t)代表技术进步等因素对产出的影响;社会固定资产总投资是港口投资与非港口投资之和;全社会从业人员作为劳动力的指标。此外,本研究所有的统计结果都是基于Eviews5.0统计软件。

四、实证检验{1}

1.Granger因果检验。Granger因果检验结果表明,港口投资是带动宁波市经济增长的主要原因之一,港口投资还带动了非港口投资(如临港工业、服务业等)的发展,同时港口投资也带动了宁波市的劳动就业的增长,除此之外,Granger因果检验结果可以看出港口投资促进经济增长的作用机制表现为:港口投资通过提高港口物流能力,进而促进宁波市的经济增长。

2.回归结果及解释。从以下回归结果可以看出,索洛模型能够很好地拟合投资(lnK)、港口投资(lnGK)、非港口投资(lnOK)、劳动力(lnL)与经济增长之间的关系。拟合系数Adj-R2都在0.99以上,四个模型的F统计量也都呈现1%的显著性水平。从模型4中可以看出港口投资与经济增长之间的回归系数为0.176,其经济含义是港口投资的产出弹性为0.176,即当港口投资增加(或降低)1个单位,经济增长增加(或降低)0.176个单位(如表2所示)。

表2中的四个模型的回归结果表明,代表技术进步等因素的时间t都与经济增长(LnGDP)正相关。除了模型2之外,所有的劳动力(LnL)对经济增长的影响不显著,这充分说明了宁波市当前的经济增长主要依赖于投资拉动,劳动力对经济增长的拉动作用非常小。模型3与模型4的回归结果也表明除港口投资之外的非港口投资(LnOK)与经济增长正相关。

3.稳健性检验。本节主要是对上一节模型进行稳健性检验,以便验证得出的结果在一定程度上是稳健的,主要使用的模型是拓展的Cobb-Douglas模型。表3中所有模型得到的回归结果都与上一节基本相同,回归结果是稳健的。模型的拟合系数Adj-R2都在0.90以上,而且F统计量在1%的水平显著。

五、研究结论

宁波市的经济是港口依托型经济,港口在社会经济发展中发挥了非常重要的作用,因此港口投资在历年社会固定资产投资中占有非常大的比重,而且这种比重有逐年增加的趋势。从Granger因果关系检验可以得出:港口投资是非港口投资的Granger原因;港口投资是港口物流能力的Granger原因;物流能力是经济增长的Granger原因。从拓展的Solow模型与Cobb-Douglas模型的回归结果可以得出如下研究结论:第一,港口投资是促进宁波市经济增长的重要因素。从表2与表3中的模型2、模型4、模型2中和模型4中可以看出港口投资与经济增长相关系数都显著为正,这充分说明港口投资在宁波市经济增长中确实发挥了非常重要的作用。第二,港口物流能力是港口投资影响经济增长的作用机制之一。从表1的Granger因果结果可以看出,港口投资是物流能力(WL)的Granger原因,物流能力是经济增长的Granger原因;反之,物流能力不是港口投资的Granger原因,经济增长也不是物流能力的Granger原因,这充分说明物流能力是港口投资影响经济增长的作用机制之一。第三,劳动力在宁波市经济增长中发挥的作用很小。表2与表3中所有模型的回归结果都可以看出,劳动力与经济增长的相关性不显著,这一方面说明宁波市的经济增长对劳动力的依赖性非常小,另一方面也说明宁波市的经济增长对投资依赖性非常高,还处于粗放型的发展阶段。

本研究的结论具有非常重要的理论意义与实践价值,其理论意义主要表现在:第一,对Solow模型和Cobb-Douglas模型的拓展。基于Solow模型和Cobb-Douglas模型,把港口投资从社会固定资产总投资中分离出来,研究港口投资对经济增长的作用,是对模型的有益拓展和补充。此外,还发现了港口投资与非港口投资的异质性特征。第二,发现了港口投资对经济增长的作用机制。以往研究都是研究投资对经济增长的直接影响,而忽略了投资对经济增长的作用机制研究,本研究使用Granger因果关系检验验证了港口物流能力是港口投资影响宁波市经济增长的作用机制之一。

其实践价值主要表现在:第一,继续加大港口投资力度,包括基础设施、集疏运网络、技术改造、合资项目等方面的投资。需要以“加快打造国际强港”战略为指引,以港口项目为导向,进一步加大港口投资,改善港口基础设施和集疏运网络。政府部门应该做好相关配套服务工作,加大政策扶持力度,扫清机制与制度对港口投资的障碍。第二,完善相关公共服务平台,为港口物流提供优质的公共服务。政府在提供物流公共服务配套,为提高港口物流能力提供相关支持,如税务、法律、保险、金融、信息等公共服务平台的建设,这些公共服务平台一方面提高了物流企业的运作效率,另一方面也促进了就业水平的提高、临港工业的发展和口岸进出口的增长。第三,改善和优化劳动力的结构,发挥劳动力对经济增长的推动作用。人才问题是实现经济发展转型升级的关键所在。宁波市在未来的经济增长之中应该充分重视劳动力的作用,改善劳动力结构,加大力度引进真正的高级人才,促进宁波市的经济发展由粗放型向集约型转变。

注释:

{1}本研究还对各序列进行了ADF检验和协整检验,后面的相关实证结果都是基于这些检验进行的,限于篇幅,这里不报告相关结果。

参考文献:

1.江锦凡.外国直接投资在中国经济增长中的作用机制[J].世界经济,2004(1)

篇5

[中图分类号]F224[文献标识码]A[文章编号]1005-6432(2013)1-0045-03

1引言

投资作为拉动经济发展的“三驾马车”之一,对经济增长具有至关重要的作用。国内投资包括政府投资和民间投资,二者对经济发展具有不同的作用。政府投资是指政府为了实现其职能,满足社会公共需要,促进经济稳定增长和经济结构合理化,对私人部门无力或不愿进入的行业或者关系国计民生的关键性行业进行的投资。民间投资是相对于政府投资和外商投资而言的,是微观经济活动中的个体根据市场的需求,利用自己的资金进行的各种投资行为。政府投资具有非营利性的特征,其目的是提供公共产品,追求社会效益最大化而非投资收益最大化,以其投资力度大、见效快等特点,对我国经济的快速发展发挥了至关重要的作用,而相对与政府投资,民间投资规模较小且产权清晰,具有高度的决策自和资产支配权,有利于快速高效达成决策、调动资金,投资效率高,资金来源广泛,是经济增长的重要动力源泉。明确政府投资和民间投资对经济增长的拉动效应,对于合理安排投资结构,实施宏观调控,促进国民经济持久健康增长具有十分重要的作用。

对于政府投资和民间投资的研究大多侧重分别研究二者对经济增长的拉动或者政府投资与民间投资的相互关系,对二者对经济增长拉动作用进行对比的研究较少。钞小静,任保平(2008)通过对政府投资民间投资与经济增长的一般理论分析,分别对其长期和短期效应进行实证研究,认为短期内政府投资对经济增长的作用较大,而长期来看其效率远低于民间投资。陈真玲(2010)通过建立协整模型,发现政府投资对经济增长的拉动作用小于民间投资,认为政府投资效率低下,公共物品不足与过剩共存,这些负面效应在一定程度上抵消了对经济增长的拉动。马宁,邹洁(2009)对我国西部12省时间序列数据进行了实证分析,认为政府投资和民间投资在经济发展中都有非常重要的作用,政府投资重在启动与引导投资而民间投资重在吸引与扩大投资,二者是相辅相成的。梁毅华,陈文静(2011)通过建立协整与误差修正模型对深证市的数据进行实证分析表明政府投资对经济增长的促进作用大于私人投资。本文在前人研究基础上,建立向量自回归模型,通过方差分解和脉冲响应函数对政府投资和民间投资对经济增长的作用进行了比较分析。

友情链接