当前位置: 首页 精选范文 航空航天行业特点

航空航天行业特点范文

发布时间:2023-10-09 15:04:03

导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的5篇航空航天行业特点范例,将为您的写作提供有力的支持和灵感!

航空航天行业特点

篇1

David H. Riemer(Siemens PLM Software航空航天与国防战略副总裁):作为用户和 Siemens PLM Software的雇员,我对 Siemens PLM Software产品的视角虽然不同但是态度是一样的:就如同当初我做用户时一样, Siemens PLM Software产品的能力是我非常赞许的。当我加入 Siemens PLM Software以后,Siemens PLMSoftware的CEO告诉我,希望以深入行业应用的方式发展业务,希望把公司的组织变成面向行业的。所以,让我领导航空航天与国防这个领域,重新组成一个团队,希望带来满足客户需求和行业需求的解决方案。因为我们都知道,不同的行业,如汽车、机械、医疗和航天等,它们都有各自的需求,航空航天与国防领域的需求和其他行业有很大的不同,要满足行业的需求,提供符合的解决方案,必须要很清楚地了解这个行业客户所做的事情及流程是什么,需要什么样的平台和工具来帮助它更好地完成项目。因此很明显,我们所具有的行业优势就是 Siemens PLM Software能够为用户提供的、非常明显的价值。

CAD杂志:从产品功能和性能角度看, Siemens PLM Software针对航空航天领域的解决方案在这个市场当中具有怎样的优势呢?

David H. Riemer:第一,就是我刚刚谈到的行业优势。第二,对于航空航天领域来讲,大型的航空航天项目型号的性能指标参数是需要追溯的,这种追溯不仅仅涉及到设计是否满足要求,还需要追溯到工艺、测试和实验 ……从航空航天领域来讲,这个追溯或者回溯的能力不仅要体现在设计团队或者研发团队,而且要贯穿从设计到分析、测试实验、实物实验,再到维护维修,所有的信息反馈都要形成一个闭环,来支持性能参数和指标的要求,这是航空航天行业区别于其他行业非常关键的一点。Siemens PLM Software的产品,能够给航空航天企业提供这种数据的追溯能力。第三,当企业需要加工一个产品时,现在普遍的做法是在计算机上模拟加工过程以确定加工的工艺性和安全性,但是这种模拟只能实现对加工动作的一种仿真。Siemens PLM Software有一个更大的优势: 80%用于航空航天领域的数控控制器都是西门子的高端控制器,因此,高端的控制器、控制器软件可以与Siemens PLMSoftware的软件一起,更加真实、全面、实时地去模拟一个完整的加工过程,从而把虚拟世界到现实世界有效地连接。第四,在航空航天领域,数字样机完成以后需要验证,物理样机完成以后也需要验证,在 Siemens PLM Software的 PLM产品当中,会提供一种被称为验证管理

的系统功能,不仅能够为用户提供数字样机验证的支持,而且可以实现对物理样机验证的支持,并且能够实现两者之间的关联。除此之外,Siemens PLM Software在维护维修和后勤保障部分,还有在产品仿真验证和实验的验证方面,都具有非常强的能力,这都是其他某一个同类系统所不能提供的行业支持,这些都是Siemens PLM Software能够提供给我们用户的优势价值。

CAD杂志:之前一段时间,Siemens PLM Software完成了对多个软件系统的收购,例如LMS,能否请您谈谈这些软件对于航空航天领域的价值?

David H. Riemer:对于一个产品全生命周期管理系统提供商来讲,Siemens PLM Software本身从规划、策划到研发、制造和维护、维修整个生命周期的过程中,有着非常好的平台和工具,包括Teamcenter和NX都能够在各个阶段发挥作用。最近5年,随着航空航天企业对生命周期管理在垂直方向技术要求的增加,我们也并购了四五家世界一流的公司,例如在测试和分析领域排名第一的LMS公司,就是我们在2年以前收购的一家公司。我们都知道,NX原来在结构领域热和流体分析源方面都有很强的功能,但是LMS在性能测试、机电一体、仿真和动态特性的仿真等领域有非常深厚的基础,特别适合于航天飞机等这样的大型的空间结构。另外值得一提的是我们并购的Vistagy公司。众所周知,无论是航空飞行器还是航天的卫星、火箭,都需要增加它的有效载荷,减轻自身的重量,所以复合材料的应用是发展非常迅猛的市场,Vistagy在材料分析领域非常杰出,有过非常多经典的案例。另外一个我想提到的是Perfect Costing,这家公司专注于优化产品设计以及制造过程,降低产品成本。这是我们目前所知在降低整体设计成本领域做得最优秀的一家公司。

CAD杂志:我们都知道,收购一个软件产品与整合重建一个完整的产品线,这是两回事。您作为一个行业中的资深用户,您认为对于现在的用户来讲,这些刚刚被收购的产品,是等待Siemens PLM Software完成整合之后再用好,还是现阶段先把他们用起来?您认为Siemens PLM Software产品的整合计划应该怎样与企业选用计划相吻合?

David H. Riemer:我原来在雷神飞机公司工作时,很早就开始使用LMS的解决方案。因此实际上,我并不建议客户去等到一个完整的集成解决方案出来以后再购买,因为LMS的解决方案是在日常的设计研发中会用到的技术。另外一点,Teamcenter有一个Teamcenter for Simulation的解决方案,它是一个非常开放的体系架构,可以集成不同的分析软件和分析工具,以及实验、实验的工具和测试的工具。我的建议是:只要企业的业务有需求,就应该购买解决方案,或者一步步地实施购买。

CAD杂志:在任何一个国家来讲,航空航天都是一个国家的机密部门,您认为怎样才能在为这个地区的企业提供好的技术、产品和支持的同时,让用户更有安全感?

篇2

中图分类号:TH12 文献标识码:A 文章编号:1674-098X(2014)11(c)-0010-02

2A12是一种可进行热处理的强化铝合金,经人工时效、自然时效或者固溶热处理后其强度较高。它具有良好的机械加工性能和塑性成型能力,因可以获得不同类型的制品,所以在航空航天行业结构件中应用广泛。薄壁结构件的加工变形问题,涉及力学、工程材料、机械制造等多个学科领域,是零件机械加工工艺中的瓶颈问题之一。本文通过对影响2A12合金薄壁零件机械加工变形因素的分析,结合典型零件的加工方法,阐述了机械加工过程中几种减少该类零件变形的措施。

1 影响薄壁零件机械加工变形的因素

薄壁零件主要是指零件的壁厚小于2 mm的零件。2A12合金薄壁零件加工变形产生的原因很多,与材料、零件的几何形状、加工方法、加工设备等均有关系。其中影响零件切削变形的主要因素有工件材料的力学性能、切削用量、刀具几何角度。在工件材料的力学性能中,对切削变形影响最大的是塑性。一般来说,工件材料的塑性越小,强度越高,则变形系数越小[1];切削速度对切削变形的影响通过积屑瘤来作用;刀具前角增大,切削变形减小;刀尖圆弧半径越大,变形系数越小。图1列出了影响薄壁零件机械加工变形的各种因素。

2 减少薄壁零件变形的措施

2.1 材料的选择

在国内航空航天行业上,2A12合金以板材和型材用量较多,常用材料标准是“铝及铝合金轧制板材GB/T3880-1997”和“铝及铝合金热挤压矩形棒材 Q/Q601-1996”,其室温力学性能如表1所示。在表1中比较2A12铝带板的力学性能,若选用较厚的材料,抗拉强度σb与规定非比例伸长应力σp0.2就较为相近,但是伸长率δ的比较,前者远比后者小,也就是说铝板2A12 H112 GB/T3880-1997的伸长率是远远小于铝棒2A12 T4 Q/Q601-1996的。所以铝合金零件的材料厚度若大于10 mm,在符合设计图纸塑性要求的基础上,要尽量不选用T4状态的板材,而应选择铝板2A12 H112 GB/T3880-1997加工成型。

2.2 纤维方向的选择

若材料的纤维方向较明显,关于组织结合力,沿纤维方向(横向)的比垂直于纤维方向(纵向)的高,所以说关于力学性能,横向的要高于纵向的,例如:实验证明,铝棒2A12 T4 50×150 Q/Q601-1996材料的抗拉强度其横向高出纵向约20 MPa。因此,在机械加工的过程中,要使材料“纤维方向”的作用获得充分发挥,纤维方向在机械加工之初(下料时)就要注意了,加工零件时要沿纤维方向,减少加工过程中发生的变形,提高其加工精度。关于2A12合金薄壁零件,要想减少零件的加工变形,要使用棒材代替板材作为材料加工。如图2零件A,选用的棒材能够用相同状态的材料加工成型,使材料的纤维方向和零件的凸台方向相一致,零件变形要比使用铝带板加工时小很多。

2.4 装夹方式的选择

室温下,2A12合金的弹性模量约为70 MPa,约为钢的1/3,在装夹力的作用下零件会发生变形,切削过程中易出现“过切”或“欠切”现象;薄壁零件结构复杂、自身刚度差也是引起装夹变形的重要原因。

对于框架类零件时薄壁结构的,可以使用压板装夹,应该采用多点压紧并且分布均匀、对称,压板要压在零件的实置。装夹时利用平口钳,若要求被加工面的形位精度要很高,可分2~3次进行铣成,在做最后一次的加工之前,应松开被夹紧的零件,重新分布内应力,再夹紧,最后进行精加工;夹紧力也不要过大,应在确保切削力不能够使零件产生位移的基础上,采用的夹紧力要尽量小。如图4零件C,图纸要求其底面(朝上)的平面度是0.03 mm,选用这种装夹方法,分为2~3次装夹加工零件;若一次装夹铣成型,则在机床上检测零件平面度合格,可是松开钳口后,平面度便会超差。

3 结语

2A12合金薄壁零件具有重量轻、比强度高等特点,是航空航天结构件中不可缺少的重要组成部分。在2A12合金薄壁零件的机械加工过程中,变形的产生几乎是不可避免的,应该在实践中了解并掌握切削变形的规律,通过采用有效方法,控制零件的加工过程,使加工过程始终处于一个良好的状态,确保零件的表面质量和加工精度。

参考文献

[1] 黄鹤汀,吴善元.机械制造技术[M].北京:机械工业出版社,2000.

[2] 梁志明,丘侃,陆耀洪.材料力学[M].北京:高等教育出版社,1992.

篇3

随着我国航空航天的不断进步,航空发动机技术的发展也不断的提高,燃油和控制系统由原来的简单系统发展到现在的复杂技术,由原来的液压机械操作发展到现在由全权限数字电子控制(FADEC)进行操作。原有的军用航空发动机中燃油和控制系统的特点是多变几何控制能力,而现在的FADEC技术将发动机的故障诊断和监视系统归入到发动机的控制系统中。在航空航天发展速度较快的今天,防喘控制也受到航天专家的重视。因此,本文将对航空发动机燃油和控制系统的发展进行阐释,为我国的航空航天发展提供理论依据。

1我国现阶段航空发动机的发展现状

1.1燃油控制系统的发展现状

燃油控制系统是航空发动机的核心控制系统,其主要性能直接影响整个发动机的控制系统,而燃油泵是燃油系统的重要组成部分。燃油泵包括燃油增压泵和主燃油泵,目前全球各国研制的军用航空发动机中的燃油增压泵是采用离心式独立转动模式,其增压能力可达到0.4-0.8 MPa;而主燃油泵一般采用的是齿轮泵,主要是由于齿轮泵的体积较小、流量较大。还有一种比较合理的选择是采用高压柱塞泵,它既可以作为主燃油泵还可以作为喷口油泵,据调查显示,该泵使用情况较为普遍,在英国生产的发动机中就采用了高压柱塞泵作为主燃油泵,最大的出口压力可达21 MPa,最大的流量也可达每小时10000kg,而近期俄罗斯也研发出了高压燃油柱塞泵。而通过大量的实验和应用显示,在泵油系统中还是应该采用离心泵作为发动机的主燃油泵,其主要特点是制造结构简单、质地较轻、燃油温升较少,且质量达到了要求。离心泵在设计上较为简单,其控制操作也极为方便,但在小流量的启动过程中其性能较低,因此需要再单独配置一个启动泵,这样将发动机的转数和流量变为可调控的模式。

1.2喷管控制系统的发展现状

发动机的喷管控制系统在航空发动机中也占有举足轻重的位置,对于发动机尾喷管的介质,我国目前采用液压油、燃油和滑油,但由于滑油和液压油的性较好,可导致喷管油源泵在工作时压力达到最高。在发动机中使用液压油系统则可以无需设立独立的油源系统,但在这样共同使用液压油源时,可对飞机的动态操作系统产生不利的影响,还会导致飞机的液压系统遭到污染。有调查显示,英国曾采用发动机尾喷管的独立滑油系统,虽然对喷管的控制得到了灵敏的提升,但在油源系统中增加了油箱和油泵等装置,使得控制系统的结构更为复杂。目前在我国的军用发动机中,使用较多的喷管控制系统是以燃油为介质,与此同时,在喷管油源泵的选择上多以高压柱塞泵为主。该泵的最大出口压力可达23 MPa,最大流量可达每小时3600L。

1.3FADEC技术系统的发展现状

FADEC技术是新研发的全权限数字电子控制系统,其主要包括传感器、执行结构、微处理机以及数据的通讯。数据传感器的使用数量在不断的增加,致使军用发动机电缆的质量也有进步,在发动机的燃油和控制系统中,传感器的质量占有不可或缺的位置。我国对传感器的研发方向是制造出光纤和智能的传感器,这将是迎合光纤通信的最大亮点。与此同时,微电子技术也给FADEC的发展提供了电子硬件,随着电子技术的蓬勃发展,微处理机也越来越受到航空专家的关注。在发动机的数据通讯过程中,通过高速的光纤数据把发动机的智能传感器和执行机构有效的连接起来,取代了原有的点到点式的串行通讯方式,这样提高了数据传输系统的安全性。在发动机未来的研发过程中,要注重防喘控制等相结合的应用,要做到同监视系统、飞控系统以及火控系统共同结合。FADEC技术可以实施较复杂的控制计划,用自适应控制系统进行对发动机的综合控制。

1.4防喘系统的发展现状

防喘系统在军用航空发动机中的主要作用是防止飞机飞行或发射武器时发动机出现喘振和熄火。美国和俄罗斯等国家在军用发动机上都使用了防喘和消喘的控制系统,同样的在我国的军用航空发动机中也应用了数字化的防喘控制系统,并取得了较大的研究进展。我国军用发动机中防喘控制系统的设计理念是采用有静压传感器的喘振信号器和高响应压力传感器,其设计可以利用数字滤波准确的判断出喘振的征候。不同类型的发动机其采用的防喘控制系统也是不尽相同的。在发动机的研发过程中,进口温度在90-100℃之内方可保证发动机工作的稳定性,若超过140℃时,发动机会出现瞬间的喘振现象,但发动机自身的防喘控制系统会将其回复到原始的稳定状态。

1.5监视系统的发展现状

在我国军用发动机中均配置了不同模式的监视控制系统,根据飞机功能的不同配置不同模式的监视控制系统,有的配置专用的监视系统,有的同飞行记录系统相兼容。我国研制的军用发动机中的监视控制系统,为了监视发动机在使用过程中关键参数的变化情况,监视系统可记录发动机的工作时间、工作温度、涡轮叶片的使用寿命系数以及高压转子的主、次循环等参数。监视系统在正常工作时,有两个机构在执行着相应的职责,一个机构执行控制系统,另一个机构执行状态监视系统,当监控系统出现故障时,就由状态监视系统进行对发动机的控制,在控制系统出现故障的时间里对飞行的数据和存储的监视参数进行记录,以便对监视故障的诊断提供帮助。

2我国未来燃油和控制系统的发展趋势

2.1供油系统的加强

我国研发的军用发动机主要是以燃油和控制系统为主导地位,采用新型的燃油泵控制系统同科学的电子硬件相结合,共同提高FADEC系统的工作性能。运用科学的控制系统和合理的控制算法可提高发动机的控制指令,不仅可以提高控制系统的使用寿命,同时还可以降低研发控制系统的成本。而降低供油系统的成本也成为学者的研究目标,研究表明当燃油的温升在20-30℃之间时,供油系统的质量便可减轻一半,这就大大的提高了供油系统的使用寿命。为了降低燃油系统对污染的增加,我国研制的军用发动机多采用离心式油泵,进而取代原有的齿轮泵和柱塞泵。但离心泵在工作过程中有弊端,即在小流量时效率较低,便会造成燃油温度的升高,因此,专家研发得出通过调节泵的工作转速来调节燃油泵的供油量。目前我国军用的航空发动机的燃油系统是应用电子技术进行控制,这就需要应用高集成度和耐高温的电子元件和器件,独立的燃油泵转动装置便成了发动机自我监视和诊断的保证。

2.2先进技术和科技的应用

我国军用发动机的燃油和控制系统中,应用了先进的技术和科技,采用耐高温的半导体元件可耐高温350℃、应用最先进的高温光电技术测量装置、采用砷化镓材质作为集成电路、高速处理器可达每秒一亿次以及高性能的复合材料。在军用航空发动机控制系统的设计上运用先进的分析和检测软件。在发动机研制过程中,应加强计算机辅助的设计理念,在燃油附件中利用先进技术进行改造,从发动机的工装设计、产品设计、工艺设计以及编程等发面共同发展,提高发动机的质量,节省研制时间。要利用先进的技术积极展开对控制系统和综合控制系统的研发工作,加强对FADEC技术的研发,利用智能传感器、数字执行机构、数据通讯、网络技术等进行发动机的研发。

3结语

在我国航空航天行业迅速发展的今天,军用航空发动机燃油和控制系统的研究取得了较大的进步。随着我国科研人员的不断研究,中国航空发动机的燃油和控制系统也达到了较高的水平。为能研制出更高质量的航空发动机燃油和控制系统,研究人员应继续加大对FADEC系统的研发工作,增加试验的准确性和应用性,要注重软件系统的编程,结合实践中发动机的型号进行研究,加快FADEC系统的研发。本文通过阐释燃油控制系统、喷管控制系统、FADEC技术系统、防喘系统以及监视系统的发展现状,进而提出了我国要加强供油系统,同时采用先进技术和科技来提高我国未来燃油和控制系统的蓬勃发展。为我国军用航空发动机的研制提供理论依据,与此同时,也为我国的航空航天发展指明了方向。

参考文献:

篇4

中图分类号:TG751 文献标识码:A 文章编号:1674-098X(2017)03(b)-0097-03

铝合金具有密度小、成本较低、内应力均匀、散热性能良好、不易腐蚀等特点,因此铝合金零件被广泛应用于各行各业,尤其是电子行业及航空航天行业。铝合金零件的成型方式一般分为钣金成型、机加工成型和模压(铸造或锻造)成型,其中,机加工成型的工艺方法更易于实现结构形式复杂而精密的零件以及单件小批量试制类零件,因而在电子行业及航空航天等领域得到了广泛应用。

近年来,因重量的限制以及密闭性、屏蔽性、功能性等综合要求,薄壁铝合金零件被广泛应用,且结构形式越来越复杂,精度要求越来越高,而且产品往往是单件试制型零件,不适于采用模压成型工艺,又因焊接工艺的局限,钣金成型及拼焊成型的工艺方法一般也无法满足产品要求,因此选用整体切削成型的工艺方法。目前,薄壁铝合金零件形式多样,该文针对非回转体类的薄壁铝合金零件(以下简称薄壁铝合金零件)的切削成型工艺进行研究,如何减少整体切削加工成型的薄壁零件变形或不发生变形,满足各项精度高的技术要求,成为了产品能否满足性能要求的关键工艺课题。

1 加工设备的选择

普通铣床一般无消隙功能,在逆铣加工过程中,易形成积屑瘤增大切削力,又因夹紧力影响,表面粗糙度达不到技术要求,薄壁处易出现扭曲变形现象,相对较厚的内框面壁厚及平面度也达不到技术要求,特别在切削加工过程中,易产生翘曲变形。若零件复杂程度高,普通铣床加工难度会更大,甚至相当困难,效率大大降低,加工设备的工艺性差。

针对薄壁铝合金零件,尤其是复杂薄壁铝合金零件,一般选择数控加工中心。它加工适应性强、多轴联动,工艺人员基于零件,统筹设计出最优工艺方案,通过数字化编程,设置合理的主轴转速、进给量、切削量、插补、刀具补偿等参数,可加工出轮廓形状特别复杂或某些特殊的难以控制尺寸的零件,如用数学模型描述的复杂曲线零件以及三维空间曲面类零件,且一般不需要使用专用夹具等专用工艺设备,加工精度和效率高;能在一次装夹后,完成多道工序(铣削、镗削、钻削和攻螺纹)的加工;若零件需要变换工位,数控加工中心重复定位精度高;通过合理的工序及工步设计,数控加工中心可以实现薄壁铝合金零件的切削成型,并且满足设计要求。

2 铝合金材料的工艺性

金属材料工艺性能的优劣,直接影响其工艺过程的繁简、难易程度,工艺人员在进行数控编程时,需要充分考虑材料特性,合理选择刀具、加工参数等,否则会影响金属制品的加工质量。

铝合金材料的工艺特性中,导热系数较高、易产生加工变形问题,特别是复杂薄壁铝合金零件,切屑量较大、形状复杂,会导致零件失去应有的加工精度。针对薄壁铝合金零件铣削成型工艺,在满足产品零件性能的前提下,选择加工工艺性能较好的2系铝合金,如2A12 H112。

3 产品成型工艺的选择

大多数产品的成型不仅仅采用一种工艺方法,合理安排各种工序,才能解决加工变形及提高精度等问题。针对薄壁铝合金零件,特别是复杂薄壁铝合金零件,主要成型工艺一般选择数控加工中心铣削成型,再统筹钳工、热处理及表面处理等工序,尤其是热处理工序与铣加工工序的交叉安排,设计出最优化的工艺路线,保证零件的技术要求。整个加工实现过程中,数控加工中心的铣削加工是零件满足图纸设计要求的关键过程。

4 薄壁铝合金零件的结构工艺性分析

4.1 零件结构特点

复杂铝合金薄壁零件的结构特点是结构要素多和壁薄等特点,通常含有如下几类结构要素:薄壁厚度不一、立面凸台、立面凹槽、端面环槽、底面凸台与环槽等,且工件多面均含有不同结构要素需加工。

4.2 变形问题

影响薄壁铝合金零件铣削成型,最需关注的是变形问题,内应力、切削热和装夹等情况,易引起工件变形。有些变形可通过合理的工艺设计避免,有些变形无法完全消除。基于零件功能,将不可避免的变形控制在非功能性区域内。

4.3 变形问题的解决途径

第一,分析零件的技术要求(尺寸精度、形位精度、表面粗糙度等),确定工位及加工内容;为保证最终的技术状态,是否增加工艺辅助工序,如工序间的热处理工艺以释放应力等;第二,合理安排工序、细化工步;第三,统筹各设计基准、形位公差和表面光洁度等技术要求,合理选择刀具、加工基始案骷庸げ问;第四,考虑变形对重复定位的影响;第五,避免变形对关键尺寸的加工产生影响。

5 铣加工工序工步的安排

合理的加工顺序是保证结构设计精度的关键,在进行工艺设计前,应该对铣加工工步的划分和顺序做好安排。

按照先面后孔、先粗后精等基本工艺原则划分工序工步,安排顺序。

根据数控机床工序高度集中的特点,采取按所用刀具来划分工序和工步的原则,即用同一把刀具加工完工件上所有需用该刀具加工的各个部位后,再换下一把刀具进行加工,以减少换刀次数和时间。

考虑到加工中存在重复定位误差,对于同轴度要求很高的孔系,就不能采用上述原则,应该在一次定位后,通过顺序连续换刀,顺序连续加工完该同轴孔系的全部孔后,再加工其他位置的孔,以提高孔系的同轴度。

6 薄壁铝合金零件加工工艺设计实例

6.1 结构工艺分析

针对薄壁铝合金零件见图1,进行结构工艺分析:零件属于薄壁盒体零件,主要成型过程采用数控铣加工成型,加工难度在于内腔的铣削量较大,易产生加工变形,且工件每个面都需要铣削加工,考虑零件技术要求及加工的经济性,合理安排铣加工工序工步,先加工底面(铣削量少的一面),再翻面加工型腔,再加工其余几面,完成铣加工工序,既能保证工件的技术要求,还可以降低成本。

6.2 零件的加工过程

通过该零件结构工艺分析,制定如下工艺路线:下料―铣基准―铣底面―粗铣内腔―视工件加工情况热处理释放应力―精铣内腔―铣端面环槽―铣侧面(4次)―钳工钻孔―表面后处理工序,其中粗铣内腔后,根据壁厚实际情况,可以通过时效处理改善工件的变形情况,从而节省成本。

6.3 零件的工艺设计

针对图1中的薄壁盒体零件,参照图纸(图2~图4),按照上述工艺流程进行工艺规程的设计。

注意:工件上表面环形密封槽的尺寸公差,以及槽内各面的表面粗糙度要求为Ra3.2;腔体内部四周立面上的凸台,要用到相应规格的T型槽铣刀。

(1)下料。

(2)虎钳装夹找正,粗精铣外形,保证平面度、粗糙度。

(3)虎钳装夹找正,铣工件底部台阶面,钻底面各孔。

(4)翻面装夹找正,粗铣内腔(注意内部异性台阶、按内腔形状),留2 mm精加工余量,精铣内腔(注意台阶、通孔处台阶高度不等),注意各侧面台阶,T型刀加工侧面圆弧凸台,T型刀铣航插孔处台阶(4处);锪台阶孔,钻孔;视情况,增加热处理工序;铣厚度到工件要求(注意形位公差),再铣环形槽,保证平面度、粗糙度。

(5)翻面装夹找正,粗精铣侧面外侧的矩形台阶,锪各台阶孔,钻铣各孔,注意孔周边倒角。

(6)翻转3次,虎钳装夹找正,粗精铣侧面外侧的矩形台阶,注意周边倒角。

(7)钳工钻螺纹底孔。

(8)表面处理。

按照以上工艺方案(流程)加工出的零件,完全满足设计要求。

7 结语

合理有效的工艺流程能够保证零件的加工质量,从而保证产品的整体性能,尤其在航空航天、电子通信等产品领域更是尤为重要。薄壁铝合金零件的铣加工工艺方案的制定综合了材料、机床、夹具和热处理等具体条件,是工艺技术和生产经验的总结,已得到了较好应用。

⒖嘉南

篇5

中图分类号:V261.2 文献标识码:A 文章编号:1674-098X(2013)03(c)-00-01

钛合金材料因比强度高、密度低、耐腐蚀和耐高温等优良性能而被广泛应用在航空航天领域中。但由于钛合金导热系数小、弹性模量低和化学活性大等特性,使得钛合金材料在加工时切削温度高,刀具磨损严重等,影响了钛合金的加工效率,因此如何提高钛合金的切削效率一直是航空航天行业迫切需要解决的难题。

1 钛合金材料的特性及加工性能

(1)比强度高:钛合金密度小,强度高,其强度大于超高强度钢。

(2)导热性差:钛合金导热、导温系数小,热量难以从产生切屑区转移出去,致使刀具切削刃的温度更高,对刀具有强烈的磨损作用,降低了刀具耐用度。

(3)化学性能活泼:钛合金在高温情况下,与空气中的O、N、H等元素起化学反应形成加工硬化层,使切削加工困难;同时钛合金在加工时与刀具材料很容易产生亲和作用,发生粘结和扩散现象,导致刀具磨损加快。

(4)弹性模量小:切削加工时工件回弹大,容易造成刀具后刀面磨损的加剧和工件变形。

(5)耐腐蚀:在550 ℃以下钛合金表面易形成致密的氧化膜,故不容易被进一步氧化,对大气、海水、蒸汽以及一些酸、碱、盐介质均有较高的抗蚀能力[1]。

2 钛合金材料切削加工的基本原则

在加工过程中,所选用的刀具材料、刀具几何角度以及切削参数等都会影响钛合金切削加工的效率和经济性,其加工原则如下。

2.1 刀具材料

刀具材料是影响切削加工重要因素,所以尽可能选用硬性好、耐磨性高的刀具材料,如硬质合金刀具、涂层刀具和高速钢刀具等,图1为硬质合金刀具和涂层刀具。

2.2 刀具几何角度

切削难加工材料时,合适的刀具几何角度有助于充分发挥刀具的切削性能,提高切削效率。切削钛合金时有三个变形区,如图2所示。

(1)基本变形区I:变形量大,切削力和切削热主要自该区域。通过保持刀刃锋利、刀尖圆弧过渡等,降低钛合金加工时的摩擦系数和切削温度,避免粘屑、崩刃。

(2)切屑与前刀面摩擦变形区II:直接影响刀具前刀面磨损。通过选择较小的前角,以增大切屑与前刀面的长度,减小前刀面磨损。

(3)工件已加工表面与后刀面磨损变形区III:对加工硬化和刀具后刀面磨损有较大影响。通过选择较大的后角,以减少后刀面与已加工表面之间的摩擦。

2.3 切削参数

切削速度对刀具寿命影响最大,切削速度越高,则切削刃温度越高,因此要选择低速切削;同时切削深度对刀具寿命影响较小,所以在零件和机床刚度允许的条件下,采用较大的切削深度。

2.4 冷却液

可以把刀刃的热量带走和冲走切屑,降低切削温度,有效提高生产率和改善被加工零件表面质量。一般切削液有三类,即水或碱性水溶液,水基可溶性油质溶液和非水溶性油质溶液[2]。

3 钛合金材料切削加工工艺

3.1 车削

钛合金车削易获得较好的表面粗糙度,加工硬化不严重,但切削温度高,刀具磨损快。针对这些特点车削钛合金时应注意的问题:(1)车削参数尽量选用低速切削,大切削深度。对于粗加工,切削速度45~70 m/min,进给量0.10~0.15 mm/r;对于精加工,切削速度80~100 m/min,进给量0.05~0.10 mm/r。(2)精加工时夹紧力不要太大,减小加工零件的变形量。(3)加工完后,对零件轮廓按最后一次走刀路线再加工一次,消除因切削力造成的零件变形及让刀。

3.2 铣削

钛合金铣削比车削困难,因为铣削是断续切削,并且切屑易与刀刃发生粘结,形成崩刃,极大地降低了刀具的耐用度。针对这些特点铣削钛合金时应注意的问题:(1)一般采用顺铣,顺铣时切削的深度由大变小,切屑由厚变薄,且总是薄的一边最后离开刀齿,切屑容易折断,提高了刀具寿命。(2)粗加工对加工质量的影响较小,应选择大切深、小进给、低转速;精加工应减少加工变形、提高表面质量,采用较高的转速、小切深。(3)钛合金加工后,在已加工表面会形成0.1~0.2 mm的硬化层,所以二次切深应大于0.2 mm;粗加工预留单边余量应大于0.2 mm。

4 结语

该文结合目前的一些研究成果和生产过程中的经验,主要从钛合金材料特性、刀具、切削参数和冷却液等方面进行阐述,总结了钛合金车削、铣削中通常应注意的问题及采取的工艺措施,希望对同行能起到一定参考作用。

友情链接