当前位置: 首页 精选范文 水环境治理综述

水环境治理综述范文

发布时间:2023-10-09 15:04:21

导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的5篇水环境治理综述范例,将为您的写作提供有力的支持和灵感!

水环境治理综述

篇1

关键词农村水环境治理;演化博弈;三方主体

中图分类号C931;X52

文献标识码A文章编号1002-2104(2017)05-0017-10DOI:10.12062/cpre.20170332

农村水环境是指分布在广大农村的河流、湖沼、沟渠、池塘、水库等地表水体、土壤水和地下水体的总称[1],是农村生产生活不可缺少的基础条件,是全国水环境的重要组成部分,直接关系着农村经济、农业发展、农民健康及农村生态可持续等方面[2]。近十年来,我国新农村建设取得了显著成效,但随着农业产业化、城乡一体化进程加快,资源消耗、环境恶化已成为农村经济发展和生态文明建设的重要瓶颈,其中突出表现为农村人多水缺水脏的矛盾加剧,农业污染物排放量大、农村生活污染加剧、畜禽养殖污染严重以及工业、城市污染向农村转移等问题相互交织[3]。以2014年全国环境统计公报数据为例,在废水及其污染物排放指标下化学需氧量排放总量中农业源排放量占比48%、氨氮排放总量中农业源排放量占比32%,可见农业源排放已从数量规模上成为我国农村水污染的主要污染源。究其原因是缺乏农村水环境治理的内生机制,在中央政府投入大量精力、财力的同时,其他利益相关主体却没有形成农村水环境保护的共识,造成部分农村水污染控制工程“晒太阳”、农村水污染监测“盲区”等现象。如地方政府在经济绩效和环境绩效的权衡中较多选择默许水污染行为、以获取地方经济利益和地方政府绩效最大化,且多年来将环保工作重心放在城市、忽视了农村区域,或者由于监管技术和成本的门槛造成地方政府监管乏力,当地农户为追逐短期经济收入通常选择使用可以带来高产的农药、化肥、随意处理畜禽粪便、排放生活污水,企业为节约生产成本往往选择无污染处理的“三废”排放。因此,在农村水环境治理过程中,考虑多主体的利益驱动、决策依据以及主体间的交互作用,构建地方政府、企业和农户共治的内生机制,是激发利益相关主体参与农村水环境治理的关键举措。

1文献综述

关于农村水环境“边治理、边污染” 和地方政府监管乏力困境问题,公共物品理论和外部性理论做出了深刻阐释:农村水环境资源通常隶属于公共物品范畴,因此决定了农户和企业的消费行为(如水污染排放)具有显著的负外部性,从而有了“公地悲剧”[4],而农村水环境保护行为(如水污染治理)却具有显著的正外部性,于是产生了“搭便车”问题,最终导致“囚徒困境”[5]。由此可见,农村水环境治理问题不仅是技术难题,更是复杂利益相关者的不同利益诉求和行为导向冲突作用下的现实困境[6],因此经典博弈论被广泛应用于揭示多元利益相关者的利益和行动,取得了丰硕成果。杜焱强等应用不完全信息博弈论探讨了政府、企业、村民和村委在农村水环境治理过程中的责任要求与行为关系,研究表明各方利益主体的策略、行为相互制约[7]。有鉴于此,Dungumaro[8]、Taylor[9-10]、曹海林[11]、于潇等[12]提出了要构建包括政府、市场、企业、农户、社会公众等多元利益主体协同参与的农村水环境网络治理新思路。但是,这些研究通常是建立在个体理性的前提假设之上的,对现实中农村水环境治理问题的信息不完备性、利益相关者的行为决策有限理性特征、个体到群体行为的作用机制复杂性等特征的解释力不足,因而基于有限理性和群体行为分析的演化博弈理论越来越多地用于揭示环境治理问题中的复杂主体交互关系和行为,并涌现了一系列最新成果。杜建国等、金帅和杜建国等、张伟等分别建立了公众参与企业环境行为、政府与社会主体环保行为、政府与企业排污行为的演化博弈模型,分析了不同情形下公众、企业、政府两两博弈的演化相位图和进化稳定策略[13-15]。潘峰等构建了地方政府与地方政府、地方政府与排污企业、地方政府与中央政府的演化博弈模型,分析了参与者的行为演化规律、演化稳定策略,得出了地方政府环境规制策略的影响因素[16-17]。郑君君等运用演化博弈理论研究了环境污染引发的博弈过程及相关的利益冲突,并考虑了群体间存在信息交互时,监管部门采用舆情引导的情况下环境污染的演化特征[18]。钟锦构建了淮河流域上游企业和下游企业水污染控制的动态演化博弈模型,分析了淮河流域上下游经济群体合作过程的演化稳定策略[19];Estalaki等将环境罚函数引入演化博弈模型,分析了伊朗北部的Zarjub河的水污染负荷分配[20]。值得一提的是,出于模型简练和分析方便等原因,上述研究的演化博弈均为两方博弈,而实质上环境保护(包括水环境治理)行为是多元利益主体共同作用的过程,仅靠两方利益主体的努力较难实现环境治理的目的。

4.1情景1:三方共同治理

由表1可知,若三方主体共同参与农村水环境治理,即要求系统(I)的平衡点(1,1,1)是ESS,则必须满足条件〖LL〗⑤。由条件⑤中的第1个不等式we-wh-2pe+cg

为了更直观地分析地方政府、企业和农户的渐进稳定

利用matlab仿真工具对上述演化博弈模型进行数值实验分析。计算表2中7个可能趋近稳定的平衡点的特征值,并依据ESS判定规则和表3稳定条件可知此时E2和E8是系统(I)的ESS,E1、E3是鞍点,E4、E13、E14是不稳定点。这表明,在农村水环境治理行动中,无论地方政府最初是否实施引导策略、企业是否采取净化策略,只要农户愿意参与治理行动,此时三方主体将全部参与到农村水环境治理行动中,进而农村水环境质量将得到显著改善,进入稳定和良性循环阶段。

4.2情景2:三方都不治理

同理,若三方主体都不参c治理农村水环境,即要求(0,0,0)是系统(I)的ESS,则必须满足条件①。由条件①可知地方政府对企业的罚款可依据其引导治理的成本大小决策,企业是否参与治理的决策取决于其直接排污的额外收益、排污带来的负收益、净化成本的大小,而农户参与治理的积极性可能受到参与治理的成本、治理带来的额外收益、举报企业的奖〖LL〗励以及不治理带来的负收益等因素的影响。

分别减小条件①中第三个不等式的参数Vsh、Vwh、(1-kh)bh的取值,增加ch的取值,分别调整为0.3、0、0、6,其它参数取值同情景1,利用matlab仿真工具对地方政府、企业和农户的渐进稳定演化轨迹进行数值实验分析。计算表2中7个可能趋近稳定的平衡点的特征值,并依据ESS判定规则可知此时E1(0,0,0)是系统(I)的ESS,E2、E3、E8是鞍点,E4、E13、E14是不稳定点。

这表明,只要减小农户参与治理农村水环境的收益,农户不会选择治理环境的行为方式,进而最终影响企业选择直接排污的策略、地方政府选择不引导策略,即三方从农村水环境治理行动中无利可图,此时系统必定演化至糟糕状态(x0,y0,z0),造成农村水环境质量恶化的后果,进入恶性循环阶段。

4.3情景3:三方以一定概率参与治理

该情景描述的社会场景是地方政府、企业和农户三方均以一定概率参与农村水环境治理行动,即存在(x*,y*,z*)的情形(见图1)。在该情景下系统(I)存在多种演化稳定策略,最终演化结果在很大程度上取决于三类种群的初始状态及其相互激励、约束关系。为了清晰地验证在该情景下系统参数的变化影响三类种群的策略选择演化过程,即分析模型关键参数的灵敏度,现将参数取值为:cg=2、ce=1、ch=0.5、pe=60、we=4、wh=2.5、Vwh=3、Vse=2、Vsh=1、kebe=0.4、(1-kh)bh=0.8,采用数值实验方法,通过图形直观地分析政府引导治理的成本cg,企业排污面临的罚款pe、净化奖励we、净化成本ce、排污额外收益Vse以及污染负收益kebe,农户参与治理的成本ch、政府奖励wh、举报企业排污获得的额外奖励Vwh、额外环境收益为Vsh以及不参与治理的环境负收益(1-kh)bh等参数的变化对演化结果的影响。图1中横坐标代表各个自变量的取值,纵坐标代表各主体的参与概率,曲线表示各主体的策略演化过程。

由图1可知,降低地方政府引导治理的成本,可提高地方政府和企业参与农村水环境治理的积极性;相反地,提高地方政府对企业排污的罚款,且罚款力度要大大超出企业的治理成本,有助于提高地方政府和企业参与农村水环境治理的积极性。同理可知,通过增加企业净化奖励、污染负收益,减小企业净化成本、排污额外收益,可促使地方政府和企业积极参与农村水环境治理(即x1,y1)。减小农户参与治理的成本、不参与治理的环境负收益,增大农户参与治理的政府奖励、举报企业排污获得的额外奖励以及额外环境收益,可促使农户积极参与到农村水环境治理行动中来(即z1)。

5结论与建议

本文针对农村水环境治理行动中有限理性的地方政府、企业和农户的不同角色、策略和行动,构建了三方演化博弈模型,分析了三方博弈主体通过长期反复博弈、学习和调整策略,形成的最理想策略结果是:(地方政府引导,企业净化,农户参与治理)。通过单种群的均衡点稳定性分析、三种群共同组成的系统(I)的均衡点稳定性分析以及润州区水环境治理行动的案例分析,得出以下三点结论:

(1)单种群的均衡点稳定性除了与自身策略的影响因素相关,还受其他两类种群的策略选择影响;

(2)在系统(I)处于良好的情景下,只要农户参与治理的意愿高,地方政府最终将趋向于引导,企业也会积极参与到农村水环境治理中,农村水环境质量将得到显著改善;相反地,在系统(I)处于不良的情景下,即使企业愿意采取净化策略积极参与治理,或农户愿意参与治理,但仍然得不到地方政府的支持或系统其它参与者的响应,最终造成农村水环境治理的“公地悲剧”;一般情景下,研究各方策略的影响因素变化对演化结果的敏感度,发现地方政府和企业的行动方向一致,此时只要地方政府和企业联合起来致力于通过一系列引导和扶持策略保障农户从参与农村水环境治理中获得切实利益,依然可以形成三方共同治理的良好局面;

(3)通^一系列引导和扶持策略保障农户从参与农村水环境治理中获得切实利益,有利于促进农村水环境质量提升。

以上结论较好地揭示和解释了我国农村水环境污染事件持续发生、形势日益严峻的现实问题,关键就在于农户的水环境行为缺乏引导、监督和惩罚机制,造成其参与农村水环境治理的收益小于不参与的收益,最终形成农户不参与治理的行为。立足于上述分析和结论,本文建议在农村水环境治理行动中构建地方政府、企业、农户共同参与的网络治理模式,各主体之间通过监督、激励、举报、信息传递与公开、辅助管理、服务提供等方式相互关联,通过这一机制积极促进农户参与治理农村水环境。第一,创建多方共同治理的农村水环境监管信息平台,各方主体只有在该平成各自承担的信息任务后才能获得上级政府或地方政府的物质激励,其中,地方政府负责水环境信息公开、民意调查和水污染事件通报,企业提交环评报告和用水排水数据,农户举报企业与其他农户排污行为、地方政府不作为。第二,实施以保护水资源和减量增收为重点的农业产业结构调整,以绿色生产为导向,转变农业种植养殖方式、经营方式和管理方式,更好地优化水资源利用;完善农业支持保护补贴政策,将政策目标调整为支持耕地地力保护和有机粮食价格补贴、取消被举报及被披露有水污染行为的农户种粮补贴,引导农户减少化肥农药用量,切实加强农村水资源保护;落实农业取用水资源税改革,对规定限额内的农业取用水免征水资源税、对取用污水处理回用水等非常规水源免征水资源税,提高农村水资源利用效率。

参考文献(References)

[1]李贵宝, 周怀东, 王东胜. 我国农村水环境及其恶化成因[J]. 中国水利, 2003(14):47-48.[ LI Guibao, ZHOU Huaidong, WANG Dongsheng. China’s rural water environment and its causes of deterioration [J]. China water conservancy, 2003 (14): 47-48.]

[2]郑慧, 赵永峰. 论农村经济与生态环境协调发展[J]. 农业经济, 2016(3):67-68.[ZHENG Hui, ZHAO Yongfeng . Harmonious development of rural economy and ecological environment [J]. Agricultural economy, 2016 (3): 67-68.]

[3]张维理, 武淑霞, 冀宏杰,等. 中国农业面源污染形势估计及控制对策Ⅰ〖KG-0.8mm〗:21世纪初期中国农业面源污染的形势估计[J]. 中国农业科学, 2004, 37(7):1008-1017.[ZHANG Weili, WU Shuxia, JI Hongjie, et al. Estimation of agricultural nonpoint source pollution situation in China and countermeasuresⅠ: estimation of agricultural nonpoint source pollution situation in China in the early 21 century [J]. China agricultural science, 2004, 37 (7): 1008-1017.]

[4]郑开元,李雪松. 基于公共物品理论的农村水环境治理机制研究[J]. 生态经济,2012(3):162-165.[ZHENG Kaiyuan, LI Xuesong. Research on water environment governance mechanism in rural areas based on the theory of public goods [J]. Ecological economy, 2012(3):162-165.]

[5]ALONSO J, FERMANDEZ A, FORT H. Prisoners dilemma cellular automata revisited: evolution of cooperation under environmental pressure [J]. Journal of statistical mechanics theory & experiment, 2006, 6(6):P06013.

[6]沈费伟 刘祖云. 农村环境善治的逻辑重塑[J]. 中国人口・资源与环境,2016,26(5):32-38.[SHEN Feiwei, LIU Zuyun. The logical reconstruction of rural environment governance [J]. China population, resources and environment, 2016,26(5): 32-38.]

[7]杜焱强, 苏时鹏, 孙小霞. 农村水环境治理的非合作博弈均衡分析[J]. 资源开发与市场, 2015, 31(3):321-326.[DU Yanqiang, SU Shipeng, SUN Xiaoxia. A Non Cooperative Game Equilibrium analysis of rural water environment governance [J]. Resource development and market, 2015, 31 (3): 321-326.]

[8]DUNGUMARO E W, MADULU N F. Public participation in integrated water resources management: the case of Tanzania [J]. Physics & chemistry of the earth parts A/B/C, 2003, 28(20):1009-1014.

[9]TAYLOR B M. Between argument and coercion: social coordination in rural environmental governance [J]. Journal of rural studies, 2010, 26(4):383-393.

[10]TAYLOR B M, LAWRENCE G A. Agripolitical organizations in environmental governance: representing farmer interests in regional partnerships [J]. Journal of environmental policy & planning, 2012, 14(4):337-359.

[11]曹海林. 农村水环境保护:监管困境及新行动策略建构[J]. 社会科学研究,2010(6):113-118.[CAO Hailin. Rural water environmental protection: regulatory dilemma and the construction of new action strategy [J]. Social science research, 2010(6):113-118.]

[12]于潇,孙小霞,郑逸芳,等. 农村水环境网络治理思路分析[J]. 生态经济,2015(5):150-154.[YU Xiao, SUN Xiaoxia, ZHENG Yifang, et al. Analysis on network governance ideas of rural water environment [J]. Ecological economy, 2015(5):150-154.]

[13]杜建国, 王敏, 陈晓燕,等. 公众参与下的企业环境行为演化研究[J]. 运筹与管理, 2013, 22(1):244-251. [DU Jianguo, WANG Min, CHEN Xiaoyan, et al. Study on evolution of enterprise’s environmental behavior under public participation[J]. Operations research & management science, 2013,22(1):244-251.]

[14]金帅, 杜建国, 盛昭瀚. 区域环境保护行动的演化博弈分析[J]. 系统工程理论与实践, 2015(12): 3107-3118.[JIN Shuai, DU Jianguo, SHENG Zhaohan. Evolutionary game analysis of regional environmental protection programme [J]. Systems engineeringtheory & practice, 2015 (12): 3107-3118.]

[15]伟, 周根贵, 曹柬. 政府监管模式与企业污染排放演化博弈分析[J]. 中国人口・资源与环境, 2014(S3):108-113.[ZHANG Wei, ZHOU Gengui, CAO Jian. The evolution game analysis of the government regulation model and enterprise pollution emission [J]. China population, resources and environment, 2014 (S3): 108-113.]

[16]潘峰,西宝,王琳. 地方政府间环境规制策略的演化博弈分析[J]. 中国人口・资源与环境,2014(6):97-102. [PAN Feng, XI Bao, WANG Lin. Evolutionary game analysis of the environmental regulation strategy of the local government [J]. China population, resources and environment, 2014(6):97-102.]

[17]潘峰,西宝,王琳. 基于演化博弈的地方政府环境规制策略分析[J]. 系统工程理论与实践, 2015(6):1393-1404.[PAN FENG, XI Bao, WANG Lin. Analysis of local government environmental regulation strategy based on evolutionary game theory [J]. Systems engineeringtheory & practice, 2015(6):1393-1404.]

[18]郑君君, 闫龙, 张好雨,等. 基于演化博弈和优化理论的环境污染处置机制[J]. 中国管理科学, 2015, 23(8):168-176.[ZHENG Junjun, YAN Long, ZHANG Haoyu, et al. Environmental pollution group event handling mechanism based on evolutionary game theory and optimization theory [J]. Chinese journal of management science, 2015, 23 (8): 168-176.]

[19]钟锦. 基于演化博弈的淮河流域水环境管理研究[D].合肥:合肥工业大学, 2008.[ZHONG Jin. Study on water environment management of Huaihe River Basin based on Evolutionary Game [D]. Hefei: Hefei University of Technology, 2008.]

[20]ESTALAKI S M, ABEDELMDOUST A, KERACHIAN R. Developing environmental penalty functions for river water quality management: application of evolutionary game theory[J]. Environmental earth sciences, 2015, 73(8):4201-4213.

[21]福集, 黄江玲. 三方博弈视角下政府应对网络推手的对策研究[J]. 中国行政管理, 2013(11):18-21.[CHEN Fuji, HUANG Jiangling. The strategy of managing Netcheaters based on Threeside Game[J]. Chinese public administration, 2013(11):18-21.]

篇2

松江区位于上海市西南,位于北纬31°,东经121°14′,境内北狭南阔,略呈梯形。东与闵行区、奉贤区为邻,南、西南与金山区交界,西、北与青浦区接壤。东北距上海市中心约40公里。黄浦江三大源流在松江南部汇合,东流出境。境内河渠纵横,池塘众多,是典型的水网地带。改革开放以来,松江区水质逐年恶化,严重影响到人民的生活环境。近年来,随着人民生活水平的逐渐增加及对改善水环境的迫切需求,上海市及松江区对松江区内河道环境进行了一系列的综合整治,且取得了一定的效果。本文对松江区河道2007年~2012年水质情况进行分析评价,分析近年来城市河道水质变化趋势,探讨水环境综合整治治理效果。

一、水质资料选定及整理

(1)评价时段。选取2006年~2012年松江区河道水质作为评价时段。(2)评价河流。选取松江区定浦河、二里泾、龙兴港、七仙泾、沈泾塘、泗泾塘、通波塘、叶榭塘、油墩港、紫石泾、大邱泾、月湖、茹塘、松江砖新河、建设河等作为主要监测河流。(3)评价方法。根据各河流2006年-2012年各月水质实际监测结果,将各监测点监测值通过数学平均得到一定时期松江区整体水质状况,参照《地表水环境质量标准》(GB2002-3838)Ⅴ类水标准(主要适用于农业用水区及一般景观要求水域)对处理后的结果进行分析及评价。(4)评价指标。评价指标主要为:DO、高锰酸盐指数、COD、BOD5、NH3-N、TP。

二、结果分析及评价

根据松江区河道水质监测结果,将2006年~2012年河道各水质指标与《地表水环境标准》中Ⅴ类水标准绘制到图表中进行分析对比,结果见图1。

由图1可知,2006年~2012年松江区水体DO、高锰酸盐指数监测值除少数月份外均能达到地表Ⅴ类水标准。图1高猛酸盐指数显示,在2006年至2012年期间,水体水质均不超过地表Ⅴ类水标准限值且监测值呈现逐年下降趋势。

图2显示2006年~2012年松江区河道COD及BOD5变化趋势,从图中可知2006年1月~2007年7月水体COD及BOD5监测值较大且有较多月份超过地表Ⅴ类水标准限值,随后逐渐减小,COD在20mg/L附近波动,BOD5在3mg/L附近波动,水质改善明显,综合治理效果显著。

从图3可知,2006年~2012年松江区水体氨氮及总磷逐渐减少,但减小效果较COD及BOD5差。从图中可以将氨氮及总磷变化分为3个时段,即2006年1月~2007年7月、2009年7月~2010年7月、2010年7月~2012年12月。2006年1月~2007年7月全面超标阶段,松江区水体氨氮及总磷均超过地表Ⅴ类水标准限值;2007年7月~2010年7月水质逐渐改善阶段,松江区整体水环境逐渐变好;2010年7月~2012年12月逐渐稳定阶段,松江区水环境整体呈现稳定,其中氨氮每年12月~6月超过标准限值且较为稳定,总磷已低于地表Ⅴ类水标准限值。同时分析图1~图3看出,2006年~2012年各年水质状况,均显示松江区水质在12月~7月份水质较差,且12月~4月左右水质呈现变坏趋势,4月~7月呈现变好趋势,其余月份相对较好。

三、结论

(1)通过2006年~2012年松江区水体水质分析,可知松江区水体水质呈现逐年变好趋势,在监测的6个水质指标中,除氨氮外均下降至地表Ⅴ类水标准限值以下,水质改善明显,治理效果显著。(2)松江区河道治理虽然取得良好的效果,但河道水体中氨氮含量始终高于地表Ⅴ类水标准限值。在采用单因子评价时,将对松江区整体水质状况产生较大的影响,故应加大力度治理氨氮超标问题。

参 考 文 献

[1]王维,纪枚.水质评价研究进展及水质评价方法综述[J].科学情报开发与经济.2012,22(13):129~132

篇3

[17]科技支撑甘肃经济社会发展战略研究课题组.科技支撑助推甘肃构筑生态安全屏障[J].甘肃科技,2011(27):38-96.

[18]李星,柴禾.日本林业治山第八个五年计划[J].世界林业研究,1992(3):92.

[19]国家林业局.日本林业[EB/OL].(2015-12-19)[2016-01-19]..

[20]余刚,井文涌.加拿大的绿色计划及其实施进展[J].环境保护,1994(10):43-45.

[21]杨少军.加拿大清洁能源和可再生能源发展现状[J].全球科技经济t望,2008(9):29-32.

[22]马建明,许静,等.国外洪水风险图编制综述[J].中国水利2005(17):2-3.

篇4

关于中国的亚热带

亚热带资源与环境福建省重点实验室简介

中国福建省亚热带山地4000年来植被变化的孢粉记录(英文)

近40年来高原气候变化特征分析

大气CO_2浓度升高对土壤中不同粒级碳的影响

上海人口经济增长及其对环境影响的相关分析

福建师范大学创新团队——亚热带山地生态过程

森林碳汇决策与农村可持续发展研究(英文)

湿润亚热带生态地理过程福建省教育厅重点实验室通过论证

木荚红豆人工林细根生物量季节动态及分布

自然保护区群网生态建设的几点思考

土壤异养呼吸温度敏感性(Q10)的影响因子

湿地生态系统碳循环过程及碳动态模型

稿件表达格式规范

GPSRTK技术在公路规划定线跨河水准测量中的应用

福州市植被生态的遥感分析

GPS技术在交通中的应用

莆田市秀屿区海域资源开发利用及保护管理

福州市土地利用景观空间格局分析

福州市水环境的问题与对策

晚清西学东渐中西学中文书刊出版地域空间拓展轨迹

永安市旅游开发战略探讨

福建省旅行社空间分析

中国旅游酒店电子商务发展现状、问题及其对策

福州休闲旅游发展初探

基于GIS/RS技术的福州城区水域时空动态变化研究

GIS支持下的县级耕地分等——以福建省福清市为例

GIS支持下的福州市海洋功能区划

2003年高考文科综合第Ⅱ卷地理试题答题评析及教学对策

中学地理研究性学习活动中教师作用的思考

中学地理探究式教学策略与实验研究

《亚热带资源与环境学报》征稿启事

中国1995—2000年省间人口迁移模拟与迁移因素对迁移规模贡献的分解

人口统计数据空间化模型综述

福建沿海主要城市入境旅游客源市场结构的比较研究

新疆查岗诺尔铁矿地质特征及成矿期次划分

济南城市土地利用结构优化研究

重庆主城区空气质量时空分布及原因分析

气象要素栅格化方法比较——以福建省月平均气温为例

安徽省肥东县农村居民点用地整理潜力分析

科技进步,农村生态环境治理的重要动力——以福建省龙岩市新罗区礼邦村为例

不同土地利用方式对闽江口湿地土壤活性有机碳的影响

女贞和野鸭椿幼苗细根形态和细根呼吸的序级特征

《亚热带资源与环境学报》影响力连年提升

篇5

中图分类号 F205文献标识码 A文章编号 1002-2104(2011)08-0142-05doi:10.3969/j.issn.1002-2104.2011.08.023

自20世纪70年代以来,中国水环境形势日益严峻,主要水污染物排放总量明显超过环境容量,一些地区已经出现“有河皆干、有水皆污”的现象。2010年2月公布的第一次全国污染源普查显示,农业污染源是水环境的一个主要破坏者,其化学耗氧量(COD)的排放明显多于工业源,因此,如何有效控制农业非点源污染已成为当务之急。我国目前对农业非点源污染控制的研究主要侧重于技术层面,而从博弈论的视角来探讨这个问题还鲜见报道。

1 文献综述

随着各国政府对工业和城市生活污水等污染的重视,点源污染在包括我国在内的许多国家得到了有效的控制和治理,而非点源污染,由于涉及范围广、控制难度大,目前已成为影响水体质量的重要污染源。非点源污染的概念是相对点源来定义的,点源污染即废水(包括工业污染源和生活污染源产生的工业废水和城市生活污染水)通过排水管道等途径直接进入受纳水体引起的污染[1],具有易于识别和治理的特点。非点源污染是指在降雨径流的冲刷和淋容作用下,大气、地面和土壤中的溶解性或固体污染物质(如大气悬浮物,城市垃圾,农田、土壤中的化肥、农药、重金属,以及其他有毒、有害物质等)进入江河、湖泊、水库和海洋等水体而造成的水环境污染[2]。广义上,非点源污染包括城市非点源和农业非点源污染;狭义上,专指农业非点源污染。本文主要讨论农业生产行为中,因不合理利用土地、盲目使用化肥农药以及畜禽养殖超标排污等行为而导致的水环境污染,故采用狭义的概念。

早在上世纪60年代国外学者就开始了对非点源污染问题的研究,逐步探索非点源污染物在地表、地下水体中的负荷及影响[3]。另外,国外在农业非点源污染控制的政策研究方面,运用经济学模型进行微观分析的研究成果也较多,其中有许多在实践中已得到了成功的实施,例如美国《联邦水污染控制法》倡导以土地利用方式合理化为基础的“最佳管理措施”(Best Management Practices, BMPs);奥地利政府为促进农业生产中合理、有效地施肥,从1986年开始征收化肥费;美国科罗拉多州Dillon水库磷污染治理的过程中,应用了点源与非点源污染交易计划[4]等等。

我国非点源污染研究始于80年代,研究内容主要涉及非点源污染负荷模型的计算与评价、污染削减控制技术、GIS模拟研究等方面[5]。基于大量的河流、湖泊、水库富营养化调查和水质规划资料,科研人员经过20多年的研究,已经在控制农业非点源污染的技术上取得了很多成果,如测土配方施肥技术、生态拦截技术、畜禽养殖中的干湿分离技术等等[6]。

但实际从上世纪90年代末,学者们才开始关注非点源污染的政策研究,例如操家顺等提出点源与非点源排污交易政策,即允许用非点源控制方法代替点源的进一步控制[7];张巍、王学军等对非点源与点源之间的排污交易进行了多层次的分析[8-9],如利用概率约束模型,在环境目标的约束下,探讨点源与非点源排污交易等经济激励政策;王晓燕、曹利平从正外部的补贴、对减少负外部的补贴及产品价格补贴等方面,对补贴对象、资金来源和补贴额度等方面进行探讨[10];另外,中国环境与发展国家合作委员会(简称国合会:CCICED)于2004年完成的《控制中国农业面源污染的政策建议》从政策角度较为详细的对非点源污染控制、治理进行了指导。

基于前人的研究,本文着重以博弈论的视角分析非点源污染控制及监管。文章第二部分分析了“公敌悲剧”现象下的非点源污染制造者之间的博弈格局,提出以“集体表现”形式作为管理非点源污染的前提假设。第三部分的市场交易模型,是基于总量控制下的成本最优化分析,进一步验证单纯依靠点源治理来达到一定环境目标,其效率远低于通过市场的排污权交易。自然资源与环境价值评估是当前环境经济学的研究热点[11-12],其源于资源、环境的稀缺性以及对人的有用性,文章第四部分的政府监督博弈模型,将环境的评估价值作为非点源制造者在行为决策时的一个重要因素,同时结合环境治理中的奖惩机制分析对非点源污染控制的影响,这在运用博弈理论分析环境问题的研究中还很少涉及。

张蔚文等:基于博弈论的非点源污染控制模型探讨

中国人口•资源与环境 2011年 第8期2 非点源制造者的博弈格局

Garrett Hardin在公地悲剧[13]中设置了这样一个场景:一群牧民一同在一块公共草场放牧。一个牧民想多养一只羊增加个人收益,虽然他明知草场上羊的数量已经太多了,再增加羊的数目,将使草场的质量下降。牧民将如何取舍?如果每人都从自己私利出发,肯定会选择多养羊获取收益,因为草场退化的代价由大家负担。每一位牧民都如此思考,“公地悲剧”就上演了――草场持续退化,直至无法养羊,最终导致所有牧民破产。

假设市场上只有A、B两个非点源污染制造者,存在完全信息静态博弈,双方都自觉“治污”时的成本分别为CA、CB,双方都选择“不治污”时的成本为0,不考虑排污者对环境的评估价值,由于治污成本必定大于0,则存在CA>0,CB>0。构造收益矩阵如表1所示,最终得到唯一纳什均衡的解为(0,0),策略组合为(不治污,不治污)。另外,相对于点源污染,非点源的发生具有随机性、间歇性、复杂性等特点[14],诸多的不确定性使得个体对污染的贡献度难以辨别,因此,非点源污染的制造者之间以及与监管者之间存在严重的信息不对称性。这种情况下,博弈各方在生产行为中更容易出现“多放羊”的局面。由此,推广至多方污染排放者博弈,水环境资源具有公共品性质,各参与者为了私利,致使水环境负荷超出了自我净化的能力,水环境严重恶化。

以太湖为例,近年来,太湖流域经济快速发展、人口大量聚集,污染物排放量不断增加,流域内主要河道和湖区的水质遭到严重破坏,水体富营养化问题突出,“公地悲剧”现象凸现。从已有研究来看,太湖流域针对点源污染治理的“零点行动”未能使水环境污染状况得到明显改善,其中非点源污染的贡献就是影响水质改善的重要因素之一[15];李恒鹏等采用遥感与GIS方法,对占太湖入湖水量50%的浙西水利分区农业面源污染进行估算,分析得出非点源污染在太湖流域地面水环境污染中占有相当大的份额[16]。

从国内运用博弈理论分析水环境污染问题的研究来看,大多数文献并没有将点源与非点源污染对环境破坏的异质性区分开来,涉及非点源污染的文献少之又少。本文针对非点源发生的特点以及排污者个体贡献度问题,假设从集体表现的角度去设计政策,建立一个在集体监督和执行基础之上的环境税或补贴机制[17-18]。通过集体监督执行的制度安排来解决集体道德风险问题,其基本思想就是:仅仅观察排水处的污染情况,当非点源污染对总污染的削减量达到一定标准时,集体里的每一个人都可以得到补贴;如果排污削减达不到标准时,每个人将被课以罚金或税收,金额等于治理超出标准外污染物的成本。这样,将人的个体努力与总的污染控制产出目标相联系,就可以将非点源污染的控制等同于点源污染的控制,不同的是,非点源治理的责任由集体中所有人共同承担。这一假设正是本文以下两个模型展开、分析的基础,对于市场博弈模型中的点源与非点源之间的排污权交易,该假设侧重于集体监督和执行的概念,即制造点源污染的企业与农业非点源制造的集体之间进行交易,由于我国农村土地的集体所有制性质,在一定程度上也验证了该假设的准确性;而对于政府监督博弈模型,该假设更侧重于集体监督和执行基础之上的奖惩机制。

3 非点源污染控制的市场博弈模型

在传统的水环境污染治理中,农业生产活动所带来的污染一直被忽略,点源(企业)要完成所有的污染物削减目标。但受污水处理技术、相关设备成本和企业自身规模的限制,点源污染削减空间有一定的限度,达到一定程度时,提高环境目标,其边际削减成本也会急速增大,这会影响到企业自身的发展。随着非点源受到越来越多的关注和研究,非点源污染在控制技术和可行性研究上已趋于成熟,并且削减成本在一定范围内也低于点源污染削减成本,日本琵琶湖治理过程证明,削减非点源磷的费用仅为点源治理的1/6[19]。

排污权交易,即先在指定区域内,设定污染物削减总量不低于一定量Q0,该区域内部各污染源之间(包括点源-点源、点源-非点源、非点源-非点源)可以通过购买方式相互交换排污权指标,排污指标的初始分配有无偿、有偿两种方式。一般来说,当总体污染水平不变而边际削减成本存在异质性、减污难易程度不同时,基于市场的机制将比其他工具更为有效。假设总削减目标既定,以总削减成本最小为目标,不考虑双方交易费用,彼此的边际削减成本是透明的,如图1所示,反映的是非点源边际污染削减成本总是小于点源时的排污交易效率。

Q0≤Qn+Qp其中Q0为削减排污量目标,Qn、Qp分别为非点源削减排污量和点源削减排污量。图1中,传统治污模式下的Q0完全由点源污染承担,总的排污削减成本为ODQ0区域,由于点源与非点源削减成本的异质性,非点源相对点源有削减成本的优势,在污染削减总量既定的条件下,市场上排污双方有交易的可能,两者要达成均衡条件为:Qn+Qp=Q0

trading and the traditional mode削减成本与非点源边际削减成本相等,同时两者的排污削减量为Q0,此时达到成本最优。点源和非点源削减成本分别为OBQp、OCQn区域,由于参与者双方成本函数相差很大,因此相对于点源完全承担削减总量的成本,交易后的削减总成本明显下降。

4 非点源控制的政府监督博弈模型

水资源拥有公共物品的性质,必须有政府的干预才可能提高效率。在非点源污染治理过程中,政府和非点源排污集体构成排污博弈事件中的两个参与人。政府为维护自身声誉设法控制水污染的形势,排污者因考虑自身生产成本缺少治污的经济动力。假设政府监督管理成本为m,因采取非点源污染监管所获得的声誉增加值为r,相反若政府不采取对污染的控制监管措施则声誉值降低r;非点源污染排放达标时的治理成本为c,同时若非点源污染削减总量高于合约规定的额度时,非点源排污集体还可以得到由政府给予的环境治理补贴,金额为s,相反,若非点源排污量超标,该集体应受到治理不当的惩罚,需缴纳t数额的罚金,即环境税。另外,考虑到水资源对公众(包括非点源污染制造者)的环境价值,设水环境评估价值为e,即超标排放会导致水环境的价值损失e,但由于环境价值评估的主观性,当环境状况改善时,公众不能立刻作出新的评估,因此排污达标时不考虑环境价值的增加值。

对支付矩阵分析可知,该博弈图不存在纯策略的纳什均衡,现在从定义出发求混合策略的纳什均衡解。设非点源集体排污超标的概率为x,达标的概率为(1-x);政府监管的概率为y,不监管的概率为(1-y),x,y分别满足0x1,0y1。

非点源排污者的期望效用函数为:

当y<(c-e)/(t+s)时,U/x>0,即当政府选择监管的概率小于一定值时,其期望效用与超标排放概率成正向关系,非点源制造者倾向于选择超标排放;相反地,当y>(c-e)/(t+s)时,U/x<0,非点源排污者更倾向于选择治理污染,达标排放;当y=(c-e)/(t+s),排污者对排污与否持无所谓态度。

对y进行分析,y/c>0,即政府对水环境的监管概率与非点源治污的成本呈正相关关系,即非点源污染的治理成本越高,排污者基于内在经济动力越倾向于超标排污,此时,政府也越倾向于采取监管措施;另外,分析结果还有y/e<0,y/t<0,y/s<0,从这三个式子可以看到,政府对水环境监管概率与水环境的评估价值、超标排污的罚金(环境税)以及环境补贴的金额呈负相关。水环境的价值评估可以通过调查非点源排放者的支付意愿来获得,在此,非点源排污者对环境评估的价值越高,政府倾向于降低监管的概率;若非点源污染排放超标时,政府对排污集体征收的环境税罚金t金额越高,处罚力度的越大,政府监管的概率越低;若非点源排污集体积极治理污染,使得排放达标,获得相应的补贴金额s越高,政府也会降低监管的概率。

政府的期望效用函数为:

对y求偏导得,V/y=x(t+s+r)-(m+s-r),令其偏导等于0,即有:x=(m+s-r)/(t+s+r)。

当x<(m+s-r)/(t+s+r)时,V/y<0,政府部门对水环境倾向于不监管;当x>(m+s-r)/(t+s+r)时,V/y>0,政府部门针对水环境的污染倾向于采取监管措施;当x=(m+s-r)/(t+s+r)时,政府对是否采取监管措施持无所谓态度。

对x进行分析,x/m>0,即非点源排污集体超标排污的概率与政府部门监管成本呈正相关关系,政府部门为保护水环境而采取的监管、监测成本越高,则非点源排污集体超标排污的概率越大;另外,对x的分析结果还有x/t<0,x/r<0,从这两个式子可以看出,排污者超标排污的概率与超标排污罚金的金额t以及政府的声誉变动值r呈负相关,即政府部门对超标排放的惩罚金额越高,排污者超标排放的概率越低;如果政府因不采取监管措施(或采取监管措施)而失去(增加)公众对政府的信任,政府部门声誉变动值r越大,排污者越倾向于降低超标排污的概率。由于x/s=(t-m+2r)/(t+s+r)2,其正负号由超标排污的罚金t,政府监管成本m及政府声誉变动值r共同决定,在此不作详细的讨论。

5 结 论

本文从著名的公地悲剧现象出发,分析了非点源污染制造者之间的博弈格局,提出以“集体表现”的形式对非点源污染进行管理和控制,该假设也是市场及政府监督模型的前提条件。在市场博弈中,非点源污染在削减成本上具有相对优势,加之点源污染治理受治污技术、成本的限制,假定排污削减目标一定的情况下,以成本最优的原则进行点源-非点源排污权交易是可行且有效率的;政府监管模型下的混合博弈结果显示,合理的环境补贴和惩罚机制能够保证政府监管的有效性,政府对自身声誉及公众形象的重视及维护也会降低非点源污染发生的概率,从非点源污染制造者的角度,公众对自然资源与环境价值的认可,非点源制造者超标排放的概率也会降低。

参考文献(References)

[1]苑韶峰,吕军,俞劲炎. 氮、磷的农业非点源污染防治方法[J]. 水土保持学报,2004,(1):122-155.[ Yuan Shaofeng, Lu Jun, Yu Jinyan. Methods of Prevention and Cure to ANPSP Caused by Nitrogen and Phosphorous [J]. Soil and Water Conservation, 2004, (1) :122-155.]

[2]金洋,李恒鹏,李金莲. 太湖流域土地利用变化对非点源污染负荷量的影响[J]. 农业环境科学学报,2007,26(4):1214-1218.[Jin Yang, Li Hengpeng, Li Jinlian. The Impact of Non-point Pollutant Load of Land-use Changes in Taihu Basin[J]. Journal of Agro-environment Science, 2007,26(4):1214-1218.]

[3]曹丽萍,王晓燕,广新菊. 非点源污染控制管理政策及其研究进展[J]. 地理与地理信息科学,2004,20,(1):90-94. [Cao Liping, Wang Xiaoyan, Guang Xinju. The Policies for Control and Management of Nonpoint Source Pollution and Its Research Progress[J].Geography and Geo-Information Science, 2004,20,(1):90-94.]

[4]Callan S J, Thomas J M 环境经济学与环境管理[M]. 李建民,姚从容(译). 北京:清华大学出版社,2006.[ Callan S J, Thomas J M. Environmental Economics & Management [M]. Translated by Li Jianmin, Yao Congrong. Beijing: Tsinghua University Press, 2006.]

[5]何萍,王家骥. 非点源(NPS)污染控制与管理研究的现状、困境与挑战[J]. 农业环境保护,1999,18(5):234-237. [He Ping, Wang Jiaji. Present Situation, Difficulties and Challenge in the Research on Regulation of Nonpoint source Pollution[J].Agro-environmental Protection,1999,18(5):234-237.]

[6]张蔚文. 农业非点源污染控制与管理政策研究:以平湖市为例的政策模拟与设计.[D]. 杭州:浙江大学,2006.[ Zhang Weiwen. Policy Study on Agricultural Nonpoint Source Pollution Control and Management: Policy Simulation and Design Based on the Case of Pinghu City. [D]. Hangzhou: Zhejiang University, 2006]

[7]操家顺,薛人杰. 试谈排污交易削减非点源污染[J]. 水科学进展,1999,(4):439-443. [Cao Jiashun, Xue Renjie. The Pollutant Discharged Trade for Reducing Nonpoint Source Pollution[J]. Water Science Development, 1999,(4):439-443.]

[8]张巍,王学军,江耀慈,等. 太湖零点行动前后水质状况对比分析[J]. 农村生态环境,2001,17(1):44-47.[Zhang Wei, Wang Xuejun, Jiang Yaoci, et al. Effect of Emission Control on Water Quality of the Taihu Lake[J]. Rural Eco-environment, 2001,17(1):44-47.]

[9]张巍,王学军,李莹. 在总量控制体系下实施点源与非点源排污交易的理论研究[J]. 环境科学学报,2001,21(6):748-753. [Zhang Wei, Wang Xuejun, Li Yin. Theoretical Study of Point-nonpoint Source Pollution Abatement Trading[J].Acta Scientiae Circumstantiae,2001,21(6):748-753.]

[10]王晓燕,曹利平. 农业非点源污染控制的补贴政策[J]. 水资源保护,2008,(1):34-38.[Wang Xiaoyan, Cao Liping. Subsidy policy for agricultural non-point source pollution control[J]. Water Resources Protection, 2008,(1):34-38.]

[11]Cooper J C, Keim R K. Incentive Payments to Encourage Farmer Adoption of Water Quality Protection Practices[J]. American Journal of Agricultural Economics, 1996, 78(2):54-64.

[12]Richard C B, Thomas A H. Measuring Values of Extra market Goods: Are Indirect Measures Biased?[J]. American Journal of Agricultural Economics, 1979, 61(5): 926-930.

[13]Garrett H. The Tragedy of the Commons [J]. Science, New Series, 1968, 162,(12): 1243-1248.

[14]余红,沈珍瑶. 非点源污染不确定性研究进展[J]. 水资源保护,2008,(1):1-5.[Yu Hong,Shen Zhenyao. Uncertainty of non-point source pollution[J]. Water Resources Protection. 2008,(1):1-5.]

[15]张巍,王学军. 应用概率约束模型分析不确定条件下非点源治理的最优策[J]. 农业环境保护,2002,21(4):314-317. Zhang Wei, Wang Xuejun. Chance Constraint Model for Nonpoint Source Pollution:Optimizing Control and Incentive Based Regulation Under Uncertainty[J]. Agro-environmental protection,2002,21(4):314-317.

[16]李恒鹏,刘晓玫,黄文钰. 太湖流域浙西区不同土地类型的面源污染产出[J]. 地理学报,2004,59(3):401-408.[ Li Hengpeng, Liu Xiaomei, Huang Wenyu. The Non-point Output of Different Landuse Typesin Zhexi Hydraulic Region of Taihu Basin[J]. Acta Geographica Sinica.2004,59(3):401-408.]

[17]Holmstrom B. Moral Hazard in Teams [J]. Bell Journal of Economics, 1982, 13(2):323-340.

[18]Segerson K. Uncertainty and Incentives for Nonpoint Source Pollution Control [J]. Journal of Environmental Economics and Management, 1988, 15:88-98.

[19]操家顺,张素英,王超. 排污交易控制太湖磷污染应用研究[J].河海大学学报:自然科学版, 2005,33(2):157-161.[Cao Jiashun, Zhang Suying, Wang Chao. Application of discharge trading to control of phosphorus pollution in Taihu Lake[J]. Journal of Hehai University: Natural Sciences Edition,2005,33(2):157-161.]

Modeling Nonpoint Source Pollution Control from the View of Game Theory

ZHANG Wei-wen1 LIU Fei1 WANG Xin-yan2

(1-College of Public Administration,Zhejiang University, Hangzhou Zhejiang 310029, China;

免责声明

本站为第三方开放式学习交流平台,所有内容均为用户上传,仅供参考,不代表本站立场。若内容不实请联系在线客服删除,服务时间:8:00~21:00。

友情链接
在线客服 发表咨询 加急咨询 范文咨询 杂志订阅