当前位置: 首页 精选范文 统计学抽样方法

统计学抽样方法范文

发布时间:2023-10-09 15:05:03

导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的5篇统计学抽样方法范例,将为您的写作提供有力的支持和灵感!

统计学抽样方法

篇1

重构随着信息科学技术的高速度发展,当代获取和储存数据信息的能力不断增强而成本不断下降,这为大数据的应用提供了必要的技术环境和可能.应用大数据技术的优势愈来愈明显,它的应用能够帮助人类获取真正有价值的数据信息.近年来,专家学者有关大数据技术问题进行了大量的研究工作[1],很多领域也都受到了大数据分析的影响.这个时代将大数据称为未来的石油,它必将对这个时代和未来的社会经济以及科学技术的发展产生深远的意义和影响.目前对于大数据概念,主要是从数据来源和数据的处理工具与处理难度方面考虑,但国内外专家学者各有各的观点,并没有给出一致的精确定义.麦肯锡全球数据分析研究所指出大数据是数据集的大小超越了典型数据库工具集合、存储、管理和分析能力的数据集,大数据被Gartner定义为极端信息管理和处理一个或多个维度的传统信息技术问题[23].目前得到专家们认可的一种观点,即:“超大规模”是GB级数据,“海量”是TB级数据,而“大数据”是PB及其以上级别数据[2].

一些研究学者把大数据特征进行概括,称其具有数据规模巨大、类型多样、可利用价值密度低和处理速度快等特征,同时特别强调大数据区别于其他概念的最重要特征是快速动态变化的数据和形成流式数据.大数据技术发展所面临的问题是数据存储、数据处理和数据分析、数据显示和数据安全等.大数据的数据量大、多样性、复杂性及实时性等特点,使得数据存储环境有了很大变化[45],而大部分传统的统计方法只适合分析单个计算机存储的数据,这些问题无疑增加了数据处理和整合的困难.数据分析是大数据处理的核心过程,同时它也给传统统计学带来了巨大的挑战[6].产生大数据的数据源通常情况下具有高速度性和实时性,所以要求数据处理和分析系统也要有快速度和实时性特点,而传统统计分析方法通常不具备快速和实时等特点.基于大数据的特点,传统的数据统计理论已经不能适应大数据分析与研究的范畴,传统统计学面临着巨大的机遇与挑战,然而为了适应大数据这一新的研究对象,传统统计学必须进行改进,以继续和更好的服务于人类.目前国内外将大数据和统计学相结合的研究文献并不多.本文对大数据时代这一特定环境背景,统计学的抽样理论和总体理论的存在价值、统计方法的重构及统计结果的评价标准的重建等问题进行分析与研究.

1传统意义下的统计学

广泛的统计学包括三个类型的统计方法:①处理大量随机现象的统计方法,比如概率论与数理统计方法.②处理非随机非概率的描述统计方法,如指数编制、社会调查等方法.③处理和特定学科相关联的特殊方法,如经济统计方法、环境科学统计方法等[7].受收集、处理数据的工具和能力的限制,人们几乎不可能收集到全部的数据信息,因此传统的统计学理论和方法基本上都是在样本上进行的.或者即使能够得到所有数据,但从实际角度出发,因所需成本过大,也会放弃搜集全部数据.然而,选择最佳的抽样方法和统计分析方法,也只能最大程度还原总体一个特定方面或某些方面的特征.事实上我们所察觉到的数据特征也只是总体大量特征中的一小部分,更多的其他特征尚待发掘.总之,传统统计学是建立在抽样理论基础上,以点带面的统计分析方法,强调因果关系的统计分析结果,推断所测对象的总体本质的一门科学,是通过搜集、整理和分析研究数据从而探索数据内部存在规律的一门科学.

2统计学是大数据分析的核心

数的产生基于三个要素,分别是数、量和计量单位.在用数来表示事物的特征并采用了科学的计量单位后,就产生了真正意义上的数据,即有根据的数.科学数据是基于科学设计,通过使用观察和测量获得的数据,认知自然现象和社会现象的变化规律,或者用来检验已经存在的理论假设,由此得到了具有实际意义和理论意义的数据.从数据中获得科学数据的理论,即统计学理论.科学数据是通过统计学理论获得的,而统计学理论是为获得科学数据而产生的一门科学.若说数据是传达事物特征的精确语言,进行科学研究的必备条件,认知世界的重要工具,那么大数据分析就是让数据最大限度地发挥功能,充分表达并有效满足不同需求的基本要求.基于统计学的发展史及在数据分析中的作用,完成将数据转化为知识、挖掘数据内在规律、通过数据发现并解决实际问题、预测可能发生的结果等是研究大数据的任务,而这必然离不开统计学.以大数据为研究对象,通过数据挖掘、提取、分析等手段探索现象内在本质的数据科学必须在继承或改进统计学理论的基础上产生.

统计数据的发展变化经历了一系列过程,从只能收集到少量的数据到尽量多地收集数据,到科学利用样本数据,再到综合利用各类数据,以至于发展到今天的选择使用大数据的过程.而统计分析为了适应数据可观察集的不断增大,也经历了相应的各个不同阶段,产生了统计分组法、大量观察法、归纳推断法、综合指标法、模型方程法和数据挖掘法等分析方法,并且借助计算机以及其他软件的程度也越来越深.300多年来,随着数据量以指数速度的不断增长,统计学围绕如何搜集、整理和分析数据而展开,合理构建了应用方法体系,帮助各个学科解决了许多复杂问题.现在进入了大数据时代,统计学依旧是数据分析的灵魂,大数据分析是数据科学赋予统计学的新任务.对于统计学而言,来自新时代的数据科学挑战有可能促使新思想、新方法和新技术产生,这一挑战也意味着对于统计学理论将面临巨大的机遇.

3统计学在大数据时代下必须改革

传统统计学是通过对总体进行抽样来搜索数据,对样本数据进行整理、分析、描述等,从而推断所测对象的总体本质,甚至预测总体未来的一门综合性学科.从研究对象到统计结果的评判标准都是离不开样本的抽取,完全不能适应大数据的4V特点,所以统计学为适应大数据技术的发展,必须进行改革.从学科发展角度出发,大数据对海量数据进行存储、整合、处理和分析,可以看成是一种新的数据分析方法.数据关系的内在本质决定了大数据和统计学之间必然存在联系,大数据对统计学的发展提出了挑战,体现在大样本标准的调整、样本选取标准和形式的重新确定、统计软件有待升级和开发及实质性统计方法的大数据化.但是也提供了一个机遇,体现在统计质量的提高、统计成本的下降、统计学作用领域的扩大、统计学科体系的延伸以及统计学家地位的提升[7].

3.1大数据时代抽样和总体理论存在价值

传统统计学中的样本数据来自总体,而总体是客观存在的全体,可以通过观测到的或经过抽样而得到的数据来认知总体.但是在大数据时代,不再是随机样本,而是全部的数据,还需要假定一个看不见摸不着的总体吗?如果将大数据看成一个高维度的大样本集合,针对样本大的问题,按照传统统计学的方法,可以采用抽样的方法来减少样本容量,并且可以达到需要的精度;对于维度高的问题,可以采取对变量进行选择、降维、压缩、分解等方法来降低数据的复杂程度.但实际上很难做得到,大数据涵盖多学科领域、多源、混合的数据,各学科之间的数据融合,学科边界模糊,各范畴的数据集互相重叠,合成一体,而且大数据涉及到各种数据类型.因此想要通过抽样而使数据量达到传统统计学的统计分析能力范围是一件相当困难或是一件不可能的事.大量的结构数据和非结构数据交织在一起,系统首先要认清哪个是有价值的信息,哪个是噪声,以及哪些不同类型的数据信息来自于同一个地址的数据源,等等,传统的统计学是无法做到的.在大数据时代下,是否需要打破传统意义的抽样理论、总体及样本等概念和关系,是假设“样本=总体”,还是“样本趋近于总体”,还是不再使用总体和样本这两个概念,而重新定义一个更合适的概念,等等.人们该怎样“安排”抽样、总体及样本等理论,或人们该怎样修正抽样、总体、样本的“公理化”定义,这个问题是大数据时代下,传统统计学面临改进的首要问题.

3.2统计方法在大数据时代下的重构问题

在大数据时代下,传统的高维度表达、结构描述和群体行为分析方法已经不能精确表达大数据在异构性、交互性、时效性、突发性等方面的特点,传统的“假设-模型-检验”的统计方法受到了质疑,而且从“数据”到“数据”的统计模式还没有真正建立,急切需要一个新的理论体系来指引,从而建立新的分析模型.去除数据噪声、筛选有价值的数据、整合不同类型的数据、快速对数据做出分析并得出分析结果等一系列问题都有待于研究.大数据分析涉及到三个维度,即时间维度、空间维度和数据本身的维度,怎样才能全面、深入地分析大数据的复杂性与特性,掌握大数据的不确定性,构建高效的大数据计算模型,变成了大数据分析的突破口.科学数据的演变是一个从简单到复杂的各种形式不断丰富、相互包容的过程,是一个循序渐进的过程,而不是简单的由一种形式取代另一种形式.研究科学数据的统计学理论也是一样,也是由简单到复杂的各种形式相互包容、不断丰富的发展过程,而绝不是完全否定一种理论、由另一种理论形式所代替.大数据时代的到来统计学理论必须要进行不断的完善和发展,以适应呈指数增长的数据量的大数据分析的需要.

3.3如何构建大数据时代下统计结果的评价标准框架

大数据时代下,统计分析评价的标准又该如何变化?传统统计分析的评价标准有两个方面,一是可靠性评价,二是有效性评价,然而这两种评价标准都因抽样而生.可靠性评价是指用样本去推断总体有多大的把握程度,一般用概率来衡量.可靠性评价有时表现为置信水平,有时表现为显著性水平[8].怎么确定显著性水平一直是个存在争议的问题,特别是在模型拟合度评价和假设检验中,因为各自参照的分布类型不一样,其统计量就不一样,显著性评价的临界值也就不一样,可是临界值又与显著性水平的高低直接相关.而大数据在一定程度上是全体数据,因此不存在以样本推断总体的问题,那么在这种情况下,置信水平、可靠性问题怎么确定?依据是什么?有效性评价指的是真实性,即为误差的大小,它与准确性、精确性有关.通常准确性是指观察值与真实值的吻合程度,一般是无法衡量的,而精确性用抽样分布的标准差来衡量.显然,精确性是针对样本数据而言的,也就是说样本数据有精确性问题,同时也有准确性问题.抽样误差和非抽样误差都可能存在于样本数据中,抽样误差可以计算和控制,但是非抽样误差只能通过各种方式加以识别或判断[910].大多数情况下,对于样本量不是太大的样本,非抽样误差可以得到较好的防范,然而对于大数据的全体数据而言,没有抽样误差问题,只有非抽样误差问题,也就是说大数据的真实性只表现为准确性.但是由于大数据特有的种种特性,使得大数据的非抽样误差很难进行防范、控制,也很难对其进行准确性评价.总之,对于大数据分析来说,有些统计分析理论是否还有意义,确切说有哪些统计学中的理论可以适用于大数据分析,而哪些统计学中的理论需要改进,哪些统计学中的理论已不再适用于大数据统计研究,等等,都有待于研究.所以大数据时代的统计学必是在继承中求改进,改进中求发展,重构适应大数据时代的新统计学理论.

4结论

来自于社会各种数据源的数据量呈指数增长,大数据对社会发展的推动力呈指数效应,大数据已是生命活动的主要承载者.一个新事物的出现,必然导致传统观念和传统技术的变革.对传统统计学来说,大数据时代的到来无疑是一个挑战,虽然传统统计学必须做出改变,但是占据主导地位的依然会是统计学,它会引领人类合理分析利用大数据资源.大数据给统计学带来了机遇和挑战,统计学家们应该积极学习新事物,适应新环境,努力为大数据时代创造出新的统计方法,扩大统计学的应用范围.

参考文献:

[1]陈冬玲,曾文.频繁模式挖掘中基于CFP的应用模型[J]沈阳大学学报(自然科学版),2015,27(4):296300.

[3]卞友江.“大数据”概念考辨[J].新闻研究导刊,2013,35(5):2528.

[5]靳小龙,王元卓,程学旗.大数据的研究体系与现状[J].信息通信技术,2013(6):3543.

[6]覃雄派,王会举,杜小勇,等.大数据分析:Rdbms与Mapreduce的竞争与共生[J].软件学报,2012,23(1):32-45.

[7]游士兵,张佩,姚雪梅.大数据对统计学的挑战和机遇[J].珞珈管理评论,2013(2):165171.

篇2

中图分类号:G80 文献标识码:A

近20年体育统计在我国已经成为十分重要和最常用的体育科研方法。但是,与此同时也有不少体育学术研究,误用统计方法,乃至以挂上统计公式作为“科学性”的幌子,使体育统计界同仁和体育科研工作者感到不自在。体育统计专业委员会也认为应该作一些有关体育统计和体育科研方法的诠释,以减少体育统计方法的误用,提高体育科研水平。

1中国体育统计现状概要

在80年代以前,包括体育统计在内,我国应用统计学科处于萎缩状态。改革开放后,统计方法的应用与统计教育重新得到重视。80年代初,教育部在武汉与襄阳两地举办体育统计教师培训,培养了改革开放后新一代的体育统计的师资与各地体育统计学术骨干。此后,体育院校、师范院校的体育系逐步开设了体育统计课程。1981年在研讨师范院校体育统计教学大纲的时候,成立了全国体育统计研究会。在中国体育科学学会的积极支持下,1984年成立了中国体育科学学会体育统计专业委员会。近20年间,许多统计方法在体育领域得到应用,如抽样理论、实验设计、估计理论、假设检验、决策理论、非参数统计、序贯分析、多元分析、时间数列等都已有研究成果的发表或报道。

然而,我国从80年代开始重新普及体育统计,与20世纪初已经发表因子分析应用研究的美国,或70年表《行动科学的因子分析》专著的日本相比,难免显得基础薄弱。正如著名社会学家教授所说,“一个学科,可以挥之即去,却不可能招之即来”。于是就出现了评析体育统计应用情况的论文,如杨震的《体育统计中应注意的问题》,梁荣辉的《体育科学研究中应用统计方法需注意的问题》,刘炜的《线性模型在体育科研中应用的常见误区》等等。要解决这些问题,不仅是统计知识的问题,也有科研方法的问题。因此必须从科学的发展,俯视体育科学研究方法,从统计学的发展端详体育统计现状。

2统计学的发展

要了解体育统计的发展趋势,有必要简要了解统计学的发展。

人类的统计活动有悠久的历史,古代已有统计整理描述的应用;13世纪欧洲有国势调查;17世纪英国的配第发表了《政治算术》;1790年美国第一次人口普查,同时农业普查;1853年由比利时政府邀请,在布鲁塞尔召开有26个国家150人参加的第一次国际统计会议;1857年,恩格尔根据家庭收入越多,则饮食支出的比例越小这一法则,引申出恩格尔系数,以饮食支出的比例作为度量生活水平升降的标准,它一直延用至今;1903年德国柏林的第九次国际统计会议上,抽样调查得到世界上多数统计学家的认同; 1930年前后美国举行盖洛普民意测验。19世纪中期奠定了概率论的理论基础。19世纪中叶起,数理经济学、生物计量学和应用数学促进了数理统计的形成和发展。社会统计学、社会经济统计学和数理统计学构成了现代统计学的枝叶。现代数理统计学可以分为两个侧面:一是理论数理统计学,它研究抽样理论、实验设计、估计理论、假设检验、决策理论、非参数统计、序贯分析、多元分析、时间数列与博弈论等;二是应用数理统计学,高尔顿、K・皮尔逊用于生物学,埃奇沃思、鲍利用于经济学,R.A.费希尔用于遗传学、农学。在宏观层次上,科学系统的发展主要表现为整体化、高度数学化和科学技术一体化。数学的应用已突破传统的范围而向人类一切知识领域渗透。二次大战以来,统计学的巨大进展已使它成为数学科学的重要而独特的组成部分。

21世纪,统计学将面临更大的挑战。统计作为由观察样本获得尽可能多的总体信息的方法,关系到信息的本质和数据处理。计算机与信息化的时代,爆炸式积累的信息与数据必须借助于统计学才能得到充分有效的利用。大规模的信息处理所遇到的信息压缩、特征检测、可靠性分析,以及数字、符号、图形乃至语言的加工等一系列问题,都要依靠统计方法与计算技术来解决。现实中的许多统计难题需要引进新的统计概念与方法甚至理论体系。当然对于体育统计的这些问题,就目前的研究力量与人才资源,是难以承担如此重任的。

计算机与商品化大型统计软件的出现,为统计学的发展提供了技术上的可行性,使更多的人有可能进行大样本数据处理和多元分析。可以预见,体育院校统计教学研究都将使用专业化的大型统计软件。即将改版的体育统计教材,已将spss的使用列入教学内容。科学、统计学的发展给体育统计和体育科研奠定了宽厚的基础,那么体育统计和体育科研的关系又如何呢?

3体育统计与体育科研方法

3.1体育科研的复杂性

虽然体育对于健康和社会的作用已被社会各界接受。然而,体育学科的复杂性还未被教育界乃至社会所理解。体育外在粗犷,却蕴含了众多的自然学科和社会学科,而使投身体育的研究者感到力不从心。谁也无法夸口能解决体育科学的众多难题。体育与健康的研究,涉及医学、生理学、心理学、人类学、健康社会学、抗衰老的研究等等;体育的动作技术分析会涉及理论力学、材料力学、流体力学、空气动力学和解剖学等等;运动训练理论会涉及技能学习、体能的提高和战术,它与生理、生化、心理、认知科学、博弈论以及教育科学的许多理论直接相关。许多体育科研,出身于相关学科的研究人员,会因为没有从事体育的感性知识而产生困难,竞技体育的研究会因为没有体验训练而难以深入。显然,在体育科研中狂妄、自负只能反照自己的浅薄。

3.2体育科研中统计方法应用的几类问题

3.2.1实验设计的基本原理

虽然研究有专业设计,但是无论你研究自然现象还是社会现象,大多需要实验或调查。

无论是实验设计还是调查设计都离不开统计。最基本的我们应该了解实验设计的三个基本原理:重复,随机化以及区组化。由重复使我们得到实验误差估计值与效应值更精确的估计;由试验对象、试验次序等随机化使观察值或误差为独立分布的随机变量,就可以使用各种统计方法;由相似试验对象的区组化使我们可能提高实验的精确度。如果不注意基本原理,你的研究难免出现方法错误。

3.2.2实验方法

体育的影响因素,如运动强度等,常常是难以控制的,实验对象经常是人,常难以齐同对比,不便重复试验,还不能对实验对象造成伤害等,这使许多主要源于农业试验的试验设计,很少能应用于体育。因此,需根据具体研究目的、研究对象等制约因素,慎重选择合适的试验方法。

3.2.3取样

无论是试验还是抽样调查都需要样本。由于经费、工作量或对抽样方法了解不够等原因,在体育科研论文的研究方法里,包括不少学位论文,对于抽样方法没有明确的交代,抽样方法有较大的随意性。如果精度要求不高,仅作探索性研究,而不是由样本推测估计总体,有时也可用非概率抽样。社会科学中的大样本研究,有时也用非概率抽样。但是,离开了概率抽样,许多统计方法就失去了应用的前提。概率抽样有多种方法,适用不同的情况。因此从研究方法的严密性看,需要在体育科研方面增补这方面的内容。

3.2.4统计分析方法

现代统计学可以借鉴的方法应该有不少,在体育统计基础相对薄弱,原创方法几乎没有的情况下,对于体育统计分析方法,首要的是开阔视野,学习、应用前人或相关学科已有的统计方法。在此基础上,研究前人已有方法不能解决的、有待建立的体育统计方法。当然,方法的建立相当困难,必须重视人才的培养和引进。按照前20年的进程,期望建立新的体育统计方法,形成较为完整的体育统计学科,都是十分困难的。

目前,体育统计应用中存在不少问题,这些问题的根源还是在于对统计基本理论的理解。如:

(1)推测性数理统计是由样本研究总体,由于样本信息是不完整的信息,必然有抽样误差存在,必然有出错的可能性。而在统计分析中却有人得出完全肯定或完全否定的结论。

(2)统计方法仅仅对试验的可靠性和有效性提供准则,但是并不证明变量间的因果关系。如均数比较的假设检验,可以给出比较对象来自同一总体的概率,但统计分析不可能给出它的原因,比如并不说明训练方法好坏等。

(3)实际的差别显著与统计显著性的差别。虽然统计上的显著性与差别大小有关,但是它的直接含义是来自同一总体的概率大小,而不是你误指的差别大小或差别显著。

(4)当训练强度与成绩提高相关,P

(5)统计方法为研究目的服务,要选择合适的方法,而不是选择复杂的方法。

(6)统计模型对于数据的测度水平,变量是连续型还是离散型,是计数资料还是计量资料,相关变量是对称还是不对称等等有不同的要求,所以在研究设计的时候就要考虑统计分析的方法。

(7)体育问卷调查有大量的名义(定类)测度与序次测度。不能不问数据资料的测度水平,一概用均数表示集中趋势,用标准差代表离散程度,用它们作线性回归、因子分析等等。

(8)不注意模型要求乱套统计公式。如不知变量的分布,作小样本的t检验;在自变量间关系过于密切的情况下作回归分析,在变量间关系不密切的情况下作因子分析。

4用好体育统计方法,提高体育科研水平的建议

(1)科学数学化特征及科学发展趋势。可以预见,体育科学必然向数学化方向发展,体育统计无论对于体育自然学科或体育社会学科都将成为重要的研究方法。体育高等学校应重视体育统计学科对于体育科学发展的重要作用。体育科研人员应从方法论高度学习科研方法,吸收相关学科的研究方法。

(2)体育统计要注重抽样研究本质的研讨。重视与概率相联系的思想方法,研究相关学科的统计方法,加强方法的移植研究,明确统计方法建立的条件,避免统计方法误用。

(3)体育科研应加强实验设计、抽样研究及社会科学常用统计方法的普及。提高体育科研人员应用国际通用统计软件包的能力。

(4)体育统计学科的纵深发展必须有跨学科人才的引进与培养。

参考文献

[1] 侯灿.医学科学研究入门[M].上海:上海科学技术出版社,2010

篇3

一、引言

当今社会,科学技术日益革新,统计思想逐步成熟,统计工具也被应用于统计领域,该领域也随之得到延伸和发展。而所谓的统计学其主要的内容是通过对数据的收集、统计、整理分析、数据处理等方法,从而更加深入的发掘数据存在的内部规律,以达到更科学、更合理的解释客观事物的目的,加深对该事物的认知。在具体工作和现实生活中,很多客观规律的分析及归纳是运用统计的方法实现的,通用的操作方法如下:首先需要在分析之前对客观事物进行研究和设计,了解该事物的基本特点;其次针对该事物进行抽样调查,调查的范围要全面;再次利用相应的统计软件和数学思想,建立相应的数学模型,对抽样的结果进行统计分析,让数据呈现一定规律;最后便是根据统计分析的结果作出结论性成果,以便能更加深入的研究及分析客观事物存在的内在规律和普遍性原则等。统计学被应用的领域广泛,本文主要针对统计学在财务方面进行研究。

二、统计学应用于财务方面的意义

(一)将统计学应用于财务,能满足企业和行业对产值、资金等方面的计算需求。行业或企业财务数据极为庞大,运用统计方法进行财务统计,便于反应企业或行业的劳动成果和产能产效,为国家统计国内生产总值、人均GDP等提供数据支撑。

(二)将统计学应用于财务,可以帮助企业或个人进行负债核算、资金流核算等,提供基础数据。运用统计学进行财务统计,既可以作为分析企业经济实力的标准,又可以将统计的数据作为核算资产负债的数据来源。

(三)将统计学应用于财务,可以用于研究分析个人、企业、国家三者之间的利益分配关系,通过统计学研究出的普遍性规律来制定符合大多数人需求的收入分配制度,从而达到合理调整利益关系的目的。

三、如何合理运用统计学解决财务管理问题

(一)利用统计学方法进行财务的收益与风险计算财务管理的过程中,经常需要计算财务收益与风险,而对应在统计学中即为算数平均值与标准差的计算。比如,企业在运营过程中,需要计算期望现金流量,往往在现实运营过程中,存在诸多影响未来现金流量的不可控因素,因此计算出的未来的资金流量存在很大的不确定性,但如果采用单一的现金流量,在一定程度上可以保证现金流量的确定性,却不能全面的反应企业的资金运营情况。在这种大背景下,可结合统计学方法,如期望现金流量法,计算未来的现金流量,能提高计算的准确性,取得较好的效果。此外,在企业财务管理的过程中,需要运用到许多基于统计学的财务预算方法,如在预测资金需求量的情况下,可以运用回归法预测、平滑法预测等。当今,基于统计学原理,已经形成了很多专业的财务预算方法,如:预计资产负债表法、线性回归法等,这些方法的运用,加快了财务管理的效率,为财务人员处理庞大的财务数据提供了方法。

(二)利用统计学方法进行审计统计抽样抽样调查是统计学常用的统计方法,而审计抽样,则是抽样调查在财务应用的体现,主要是指审计人员在审计时,审查主体数据量比较庞大,因此仅抽取部分样本进行审查分析,通过分析抽取样本的审查结果,从而大致推断出总体的审查结果,这也是我国财务审查的主要方法之一。统计抽样之前需要先进行假设检验,即在抽样调查之前需要确定抽样规模、范围、基本参数等,之后还需对选取的样本进行初步审核。若在实际审查的过程中,抽取的样本不能满足审查要求,还可对样本的规模进行逐步扩大,以达到抽样结果的特征与总体情况基本相符的目的。在审查的最后,根据样本的审计结果进行推导,从而得出基本符合总体特征的结论。在实际的审计过程中,抽样的方法有很多,如货币单位抽样、变量抽样等。而在选择抽样方法时,审计人员应该根据审计的目标、效率及审查总体的特征合理选择,以达到审查的最终目的。

四、统计方法在财务管理中的应用

当今社会,统计学方法被大量应用于财务管理的各个方面,其最终目的在于提高财务管理的效率,分析财务活动的合理性,为财务活动的预测、决策、控制等提供科学依据。本文从收益率的预测、概率图的运用、数据的准确性及数据变异系数的分析四个方面着手,对统计学在财务方面的应用进行研究分析。

(一)预测未来收益率,提高企业收益。一个企业在实际运营过程中,能很好的把控未来的发展状态及收益情况,是企业发展的重要途径。利用合适的统计学方法可以实现利用已有的数据预测未来一段时间的数据。对应到企业中去,即运用统计学的方法,对企业现有的资源进行统计分析,预测未来一段时间内的收益情况,从而根据预测的收益率指定相应的实施方案,从而达到提高企业收益的目的。

(二)利用概率分布图,进行数据分析及投资决策。在具体的财务管理过程中,可利用统计学方法对已有数据进行处理,并根据需求绘制相应的概率分布图,那么各种数据的变化规律便一目了然,以便于决策者根据其变化规律进行投资或运营。比如在计算企业未来收益率时,可以根据现有的数据进行统计分析并绘制出一条概率与结果近似关系的连续性曲线,并根据该曲线推导出未来的收益率,从而进行投资决策。概率图有两个最主要的特点:概率分布图越集中,则其预期结果越趋向于实际结果,则其风险越小,投资回报率越高。当所得到的概率分布图越集中时,则说明实际结果越有可能接近预期值;反之,概率分布图越稀疏,则实际结果与实际结果的差距越大,风险也越大。

(三)利用标准差,确保数据的准确度。在财务的实际管理过程中,经常需要确定数据的准确程度,而财务人员通常是是利用统计学中的标准差的大小来判断所得到数据的精确程度。计算标准差的步骤如下:第一,根据现有的数据进行预测,得出收益的预测值;第二,将收益率的预测值和实际值相减,得到离差值;第三,计算概率分布方差,即将离差值求平方,并将得出的平方值与预测值相乘,再将这些乘积相加;第四,对方差进行开方计算,得到标准差。

(四)运用数据变异系数,度量单位收益风险。变异系数是标准差与平均数的比值,主要是用来衡量数据的变异程度,即用于度量单位收益下的所面临的风险。这种单位收益的风险判断为企业的决策提供了有效的借鉴。因为变异系数既能计算风险还可以反映企业收益,因此在企业的财务管理中被大量应用。

五、结论

企业或行业的财务管理过程中会面临大量的数据处理,合理利用统计学方法进行数据的统计及分析,对简化数据处理,提升数据准确度、精确度,甚至对于财务决策等各方面均有所助益,因此,将统计学方法引入财务管理具有非常重要的意义。

【参考文献】

[1]李金昌.关于统计思想若干问题的探讨[J].统计研究.2006,(3).

篇4

1 什么是统计学

问:一般认为,统计学这个词来源于拉丁语的国情学,原是国家管理人员感兴趣的事情。《大不列颠百科全书》对统计学下的定义是:“统计学是关于收集和分析数据的科学和艺术。”陈希孺院士认为:“统计学是有关收集和分析带有随机性误差的数据的科学和艺术。”

史宁中教授,作为统计学家,您是如何认识统计学的?

史教授:我们先来简单地回顾统计学的历史是有益处的。正如拉丁语所说,统计原本就是收集和分析国家管理中需要的各种数据,比如国民收入、各种税收。为了直观,人们才发明了各种报表、直方图、扇形图,等等。可以看到,这种传统意义上的统计学现在仍然是非常重要的,这也是我们现在小学统计教学中的主要内容之一。后来到了14世纪左右,随着航海业在欧洲兴起,航海保险业开始出现。为了合理地确定保险金与赔偿金,需要了解不同季节、不同路线航海出现事故的可能性大小,需要收集相关的数据,根据数据进行分析和判断,这被称为近代统计学的发端。到了19世纪末20世纪初,人们把数学、特别是概率论的有关知识引入到统计学,构建了统计学的基础。与古典统计学相比,虽然二者都是对数据的收集和分析,但却有本质的不同,因为后者进行分析的基础是“不确定性”,我们称之为“随机”。

到了现代,人们发现,对于大量数据的分析,采用随机的方法不仅方便而且准确。比如,对于国民收入,我们可以动用大量的人力来收集数据,但是谁都知道这样的数据不可能是准确的,远不如我们依据某种原则规划分出地区和人群,然后抽样、加权求和准确。再比如,对于股票市场,一天交易之后,可以得到精确的交易总量,但是人们宁可用部分核心企业的股票交易量来反映股票的变化,这便是“恒生指数”“上证指数”,等等。特别是到了2l世纪,银行、保险、电信,以及材料科学、基因组学等新兴学科的实验中涉及大量数据,其分析更需要借助随机方法了。我想,大概就是因为这些原因,国家才决定在现在中小学数学的教学中加入统计学的内容。

因此,你们谈到的关于统计学的定义都是可以的。但是,要把握统计学的根本思想方法却是非常困难的。

问:那么,您认为统计学的基本思想方法是什么呢?

史教授:这是一个不容易回答的问题。对于统计学的掌握很大程度上依赖于感悟,需要比较长的时间的理解与实践。我们先来回顾一下中小学传统数学的教学内容。这些内容主要是对日常生活中见到的图形和数量的抽象,研究的问题是图形的变化和计算法则,研究的基础是定义和假设,研究的方法主要是归纳、递归、类比和演绎推理。

统计学则不同。如我上面谈到的,统计学是通过数据来进行分析和推断的。因此,统计研究的基础是数据。这些数据的特点是,对于每一个数据而言,都具有不确定性,我们需要抽取一定数量的数据,才能从中获取信息。因此,统计学的研究依赖于对数的感悟,甚至是对一堆看似杂乱无章的数的感悟。通过对数据的归纳整理、分析判断,可以发现其中隐藏的规律。因为可以用各种方法对数据进行归纳整理、分析判断,所以,得到的结论也可能是不同的。而且,我们很难说哪一种方法是对的,哪一种方法是错的,我们只能说,能够更客观地反映实际背景的方法要更好一些。比如,我们希望知道某公司员工的收入情况,可以用平均数也可以用中位数,很难说哪个方法错。事实上,如果收入比较均衡,用平均数要好一些;如果收入比较极端,用中位数要好一些。当然,最好的方法是对收入。情况进行分类,但是分类的方法又有好坏之分。我们可以看到,统计学关心更多的是好与不好,而中小学传统数学关心更多的是对与错。

因此,统计学的基本思路是,根据所关心的问题寻求最好的方法,对数据进行分析和判断,得到必要的信息去解释实际背景。

2 统计学的研究对象

问:我们对于统计学有了一定的了解。从您的谈话中我们感觉到,统计学似乎是包罗―万象的。那么,统计学到底是研究什么呢?

史教授:是这样的,统计学的应用面非常广,凡是涉及数据分析的都可以成为统计学的研究领域。特别是到了近代,人们希望更加精细地了解实际背景,更多地借助数据分析,甚至人文科学也是如此,并且逐渐形成了专业的研究领域,比如计量经济学、计量社会学、计量教育学、计量心理学,等等。这些研究领域分析方法的基础大体是统计学。统计学并不研究某一个领域的具体内容,在本质上只是研究数据分析的方法,这包括创新的方法,也包括分析方法的好坏、分析方法的适用条件。

问:您能否结合中小学统计的内容谈得更具体一些?特别是在统计教学过程中,应当把握的基本原则是什么呢?

史教授:可以在统计研究中首先遇到的问题是如何获取“好”的数据。所谓“好”的数据,是指那些能够更加客观地反映实际背景的数据,而要获取好的数据要依赖于“好”的方法。根据数据的不同,方法主要分两大类,一是通过调查收集数据,二是通过实验制造数据-中小学统计教学中涉及的主要是前者,称为抽样调查(而后者通常被称为实验设计)_抽样调查又包含两个方面,一个是对已经存在的数据的收集,称之为抽样,比如市场的物价、学生的身高、企业的产值,等等;另一个是需要我们了解才能够获取的,称之为调查,比如美国总统的民意支持率、人们日常消费的主要项目、中小学生喜欢的歌手,等等。

根据问题的不同,所要采用的方法也可能不同,但是要建立两个基本原则。第一个基本原则是,采用能够获取好的数据的方法。为了获取好的数据,我们需要尽可能多地利用对于实际背景已有的先验知识。比如,希望知道学生的身高,先验知识是“年龄之间差别很大”。因此,最好是根据年龄段学生数的多少按比例抽取样本,我们称这种方法为分层抽样。可以看到,统计方法的直观想法是很明显的。如果对于实际背景一无所知,那么一定要抽取样本,这便是随机抽样。比如,希望知道学生喜欢的歌手,因为这些学生年龄之间差别可能不大,就可以采取随机抽样。当然也可以用分层抽样,但要麻烦得多。第二个基本原则是,采用简单的方法。能够基于上述两个原则的方法就是一个好方法。我们不要小看第二个原则,一个好的方法往往能够节省很多调查经费。这就是为什么咨询公司非常欢迎统计学家的原因。

问:刚才您提到了样本,许多教师对样本这个概念总是感到费解。

史教授:是的,这个概念很难把握。样本实质上就是数据,但是,统计学中涉及的数据往往是随机性的。还是

回到“学生的身高”这个问题上来。在抽样之前。我们可能并不知道具体数据的大小,这些数据对于我们是随机的。为了讨论出一个好的方法,我们假想能够得到这些数据,并且假想这些数据的出现是依据某种规律的,这种规律就是数据出现的可能性在小,我们称之为概率。比如,高年级学生出现大数据(高个子)的可能性要大于低年级学生,就是说,出现大数据的概率要大。但是,只有当抽样之后我们才能得到真实的数据;才能进行实质的计算与分析。这样,我们所要研究的数据既具有随机性又具有真实性。为了方便起见,我们称这样的数据为样本。

问:根据您的阐述,统计学怎么有一些哲学式的思考呢?

史教授:你们理解到了根本。这是统计学与中小学传统数学的最大区别。传统数学可以根据假设和规定的原则进行计算或者推理,但是统计学往往要问你所采用的方法是不是有道理,是不是还有更为合理的方法。不过,传统数学是统计学不可缺少的工具。

问:是不是因为统计学需要计算呢?

篇5

methods and applications of statistics in the atmospheric and earth sciences

2012,384p

hardcover

isbn9780470684443

n. balakrishnan著

友情链接