发布时间:2023-10-09 17:42:33
导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的13篇物联网安全技术趋势范例,将为您的写作提供有力的支持和灵感!
中图分类号:TP309 文献标识码:A 文章编号:2095-1302(2013)01-0068-03
0 引 言
2009年11月,国务院批复同意《关于支持无锡建设国家传感网创新示范区(国家传感信息中心)情况的报告》,物联网(Internet of Things,IOT)被确定为国家战略性新兴产业之一。2010年2月,教育部办公厅下发了《教育部办公厅关于战略性新兴产业相关专业申报和审批工作的通知》,物联网技术成为加速高校教学改革、培养创新型人才重点支持的专业方向之一。
应用是物联网发展的动力[1],公安院校更注重实战应用能力的培养。安全技术防范课程在公安院校设置的目的就是培养符合公安实战需求的人才[2]。将物联网应用在安全技术防范课程的教学实践中,不仅适应当前我国大力推进物联网走进高校教学实践的趋势,也符合公安教育面向实战、突出实训教学的要求[3],同时也是在我国全面建设小康社会关键时期,打击各种智能化、科技化违法犯罪行为,保卫经济文化建设成果,培养公安应用型实战科技人才的强烈需求。
1 安全技术防范课程体系研究
当前,公安院校安全技术防范课程所使用的参考教材[4-7]主要内容包括入侵报警、火灾报警、视频监控以及出入口控制等四种安防系统。从安防体系组成及功能的角度,将安全技术防范课程体系的学习分为数据采集、数据传输和数据应用三个部分,其系统组成及功能如表1所列。
通过学习安全技术防范课程,学生可以明确了解安防系统的信号处理流程。事实上,组成安防系统的数据采集部分主要是通过各种传感器将防区内的物理化学信号,以有线或无线的方式通过数据传输部分送至数据应用部分的报警控制器,经报警控制器的分析、判断来确定是否报警、反应和制止。从体系结构上看,物联网的三层体系结构与安防系统有诸多相似之处。
2 物联网体系研究
物联网内涵丰富,涉及计算机网络、微电子、通信、控制等诸多领域,是当代信息技术发展的产物,物联网应用更是深入到了社会生活的各个方面。概括来讲,物联网就是一个通过信息技术将各种物体与网络进行连接,以帮助人们获取与物体相关信息的巨大网络。虽然,至今在学术界对物联网的概念没有统一的说法,但对物联网体系结构的理解和认识上,基本是一致的,物联网体系结构从下到上可分为三层:感知层、网络层和应用层。其功能如表2所列。
比较表2与表1可知,物联网体系结构中的感知层,可以实现对防区内危险信号的采集,网络层主要是将这些危险信号通过通信网络以有线或无线方式进行传输或处理,而应用层则可与安防行业相结合,实现入侵报警、火灾报警、视频报警以及出入口报警等功能。
3 物联网在安全技术防范教学实践中的应用
物联网在安全技术防范课程教学实践中的应用可以体现在理论教学和实践教学两个方面,但所涉及的内容应注重与安防工程、公安实战相结合。安全技术防范课程教学应将传统的安防系统与现代的物联网相结合,在理论中建立学生对物联网安防的感性认识,在实践中提高学生对物联网安防的运用能力,为其以后从事相关专业的警务工作打下良好基础。
3.1 基本概念
着重向学生介绍物联网的基本概念,让学生认识物联网;介绍物联网在国内外发展现状,让学生了解物联网最新发展动向;介绍物联网与安全技术防范在体系结构方面的相似关系,让学生明确物联网与安全技术防范之间的关系;介绍物联网安防在公安工作中的相关应用,让学生清楚学习该课程在公安实战工作中的现实意义。
对于基本概念方面的教学实践,可以通过视频演示物联网在安防工程和公安工作中的应用案例,或者以任务书的形式对物联网在安防行业中的应用展开调查,以认知方式促进学生对物联网系统的理解。另外,还可以通过物联网学习网站、物联网知识竞赛,甚至开展物联网文艺展演[8] 来激发学生学习物联网的兴趣和自主学习的积极性。
3.2 数据感知
在数据感知方面,可以着重向学生介绍与安防系统相关的各种传感技术,例如开关、振动、声波(超声波、可闻声波和次声波)、红外、微波、光电、光纤、视频、指纹等在安防行业中应用的传统传感器的工作原理和使用安装方法,另外还应包括例如传感网、一维和二维条码、射频识别(RFID,Radio Frequency Identification)等物联网关键技术,突出物联网的信息感知和物体识别这两个方面的作用。
该部分的教学实践应根据安防行业的相关应用,例如在入侵报警系统中的移动人体红外信号采集与误报警识别,在火灾报警系统中,火灾发生后的光、热、烟以及气味等信息的采集与火识别,视频监控系统中的图像、声音以及报警联动信息的采集与人像识别,出入口控制系统中的人像、指纹、车牌以及卡片信息的采集与人像、危险物品、车辆识别等。在模拟的实验实训环境下,让学生掌握各种传感器的使用范围和应用场合,引导学生学会多种数据的综合采集与识别,并依靠软件系统集成在同一界面,以软硬件结合方式巩固学生对物联网安防数据感知的理解。
3.3 数据传输
很显然,这部分涉及到通信方面的知识。首先,需要向学生阐明物联网与互联网的关系:物联网是互联网接入方式与终端系统的延伸,也是互联网服务功能的扩展[9];其次,应介绍互联网与物联网的特点与作用,传统互联网方面包括公共交换电话网络(Public Switched Telephone Network,PSTN)、非对称数字用户环路(Asymmetric Digital Subscriber Line,ADSL)、综合业务数字网(Integrated Services Digital Network,ISDN)等有线通信知识,以及无线广域网(Wireless Wide Area Network,WWAN)、无线局域网(Wireless Local Area Network,WLAN),物联网方面包括无线传感器网络(Wireless Sensor Network,WSN);最后,介绍物联网与互联网的互联互通接口方面的知识,是学习物联网扩展应用互联网的关键一环。
该部分的实践教学,应主要突出物联网与互联网的交会对接以及传感器节点的组网通信,例如无线保真(Wi-Fi ,Wireless Fidelity)、ZigBee,实现对采集信息的融合和初步处理,为下一步物联网安防系统的决策提供信息传输通道。大量传感器节点组网通信方式多种多样,学生可以深入理解物联网安防系统中信息传输的方式和创新路由协议,摆脱传统程式化实验实训方式,突出实践和创新,帮助学生提高专业素质,增强应变能力,对适应日趋复杂的社会治安形势具有现实意义。
3.4 数据处理
数据经过感知、传输,最终的目的是为了应用。安全技术防范课程的主要目的是培养学生解决实际问题的能力。因此,该部分应着重向学生介绍传统的数据处理技术、物联网数据融合技术、云计算技术、物联网信息安全以及物联网操作系统(例如TinyOS、MAINTIS OS、MagnetOS)等技术。
安防系统中数据处理的最终目的就是要实现对报警联动装置的控制,这就使得这部分的实践教学具有一定的独立性,同时在此基础上,又具有综合性。例如,进一步将各种数据和报警信息进行融合和挖掘,可以以此为依据制定应急预案、突发事件现场处置、案件决策指挥,有利于培养学生分析问题、思考问题、解决问题的能力,强化公安机关的指导监督作用,明确该课程在警察职业中的角色意识。
4 教学实践中所面临的主要问题
4.1 思想认识问题
目前,物联网安防的应用还处于起步阶段,尽管已经有部分院校[10-12]在物联网教学方面初见成效,但是在公安实战中的应用还处在研究阶段。当前公安院校在这个方面还没有积累足够的教学实践经验,而且在安全技术防范课程中的应用更是没有启动,没有成形的教学实践模板,这就使得公安院校相关主管部门的决策者对于物联网在安全技术防范课程教学实践中的应用尝试会有所顾忌,举棋不定。
4.2 课程体系设置问题
不管是物联网,还是安全技术防范这门课,其内容中都涵盖了大量的物理、电子、通信、计算机处理甚至高等数学等方面的知识,综合性非常强,这对于公安专业的学生,学习起来还是比较困难的,没有必要的前导课程做铺垫,势必无法达到应有的教学效果。
即使课程体系经过完善之后,随之而来的将是教材问题。教材决定着课程教学实践的成败,市面上适用于安全技术防范课程的教材本来就比较少,而适用于公安院校且以物联网为应用背景的安防教材几乎是空白,因此,是自编讲义还是出版教材,这都将是试图在物联网应用方面有所突破所必须跨越的鸿沟。
另外,教师问题将伴随着教材问题同时出现。安全技术防范课程的任课教师需要有深厚的安防工程经验和丰富的案件处置经历,而且物联网是一门新兴的技术,这就要求任课教师要不断地充实和完善自己的知识结构,结合最新的安防成果和与安防工程相关的科技犯罪案例,将复杂的问题简单化,让学生更容易接受并理解。这无疑又对任课教师提出了更高的要求。
4.3 资金投入问题
物联网在安全技术防范课程的推广应用需要大量的硬件和软件。安全技术防范作为工程实践性比较强的课程,单一的课堂讲解无法达到教学目标,也不符合公安教育的要求。因此,需要配备配套的实验实训软硬件设施,主要包括实验实训场地的建设、配套设施的装修,大量传感器、数据通信和处理设备以及配套软件的购置及更新,这些都需要大量的资金投入。
软件投入则包括教师安防行业调研与物联网技术培训,还需要定期参与安防工程的方案论证、项目验收等公安一线的挂职;另外,邀请或选聘那些在公安一线有着扎实的理论功底和丰富的安防工程经验的专家[3]以及物联网方面的专家学者来校做讲座或成为专职教师,这些都将是不小的开支。因此,资金的投入使得物联网在安全技术防范课程中的应用可能会受到一定的限制。
5 结 语
物联网“十二五”发展规划显示,物联网在安防领域已经初步取得了一定效果。物联网已经被确定为国家性战略新兴产业,党的十报告中再次强调了“推动战略性新兴产业的发展”。在良好的政策环境下,物联网为公安院校安全技术防范课程的教学实践带来了崭新的思路。通过物联网在教学实践中的应用,能激发学生学习兴趣和主动性,优化课程体系,完善教师的知识结构,更有利于学生的实践能力和创新能力的培养和提高,为其以后灵活应对复杂多变的治安环境提供良好的实战平台。但是,我们也不能不看到,物联网在安全技术防范课程中的应用还处在起步和探索阶段,还有许多问题需要解决。
参 考 文 献
[1] 瞿惠琴.高职物联网专业传感器技术课程教学改革初探[J].科技视界,2012(14):123,128.
[2] 卜全民.《安全技术防范》课程教学改革研究[J].科技信息,2008(36):39-40.
[3] 杨辉解.公安专业实践教学的难点及解决路径——以公安招录培养体制改革为视角[J].中国城市经济,2010(8):158-159.
[4] 齐霞.安全防范技术教程[M].广州:暨南大学出版社,2011.
[5] 黄超,杨跃杰.安全技术防范[M].北京:群众出版社,2009.
[6] 汪光华.安全技术防范基础[M].北京:高等教育出版社,2008.
[7] 范晓丽,吕立波,杨世臣.安全防范技术教程[M].北京:中国人民公安大学出版社,2005.
[8] 哈艳,梁森,陈晓健.物联网教学模式探究[J].保定学院学报,2012(4):121-123.
[9] 中国物联网发展研究中心.中国物联网产业发展年度蓝皮书(2012)[R].无锡:中国物联网发展研究中心,2012.
0前言
随着互联网技术的出现和发展,计算机服务器不再单单是独立的运算处理数据的设备,它可以通过互联网构建的信息交流平台与其他已经串联在该平台的单独的计算机进行连接,实现了信息的互通互联,做到我可以访问你的,你也可以查看我的。这就导致了之前信息安全发生了本质的改变,它不再是单一的信息安全问题,而是在此基础增加系统性防护的网络安全问题。但是随着现代网络技术发展过快,网络环境鱼龙混杂,这就促使网络安全成为互联网技术继续快速发展的首要问题。因此,通过分析现阶段网络技术的发展情况,针对网络安全的影响因素,重新规划网络技术未来的发展途径将是新时展网络技术的必经之路。
1网络安全技术的现状
网络安全技术其实包含了网络设备、网络软件以及网络信息三个方面的安全技术,其主要目的就是保护网络系统中的硬件、软件以及信息的安全,使它们不因偶然因素或者恶意攻击而导致硬件损坏、软件数据被篡改、有效信息泄露等种种状况,维护计算机网络的整体安全和保证计算机网络的正常工作。当下,计算机网络通信已经被普及到人们生活的方方面面,视频通话、移动支付、线上购物等功能的开发,互联网和物联网技术的结合,使我们的生活模式向高智能化又迈出了一大步。与传统生活模式相比,高智能的生活模式更容易满足我们的需求,使我们的生活趋于简单,高效便捷。经过十几年的努力和不断探索,可以说我国在网络安全技术方面取得了极大成果。我国对计算机网络安全的分析,从早期的只有单一的防火墙,到现在拥有报警、防护、恢复、检测等多个方面的网络安全管理系统,并在此基础之上建立了PPDRR网络安全模型,可以说在技术上已经取得了巨大的进步,同时为用户提供了更加多样化的选择。但这并不意味着网络安全已经没有威胁,而是存在着更大的挑战。
2网络安全的影响因素
网络安全方面的问题并不是一个在特定环境下偶然发生的问题,它是历史性问题,是一直伴随着网络发展过程而出现的种种问题,网络安全问题是不可能全部消除的,它受到众多社会因素的影响。具体而言,大致有以下几个方面:(1)网络信息被泄露、篡改以及非法传输。当前,互联网技术被大量应用在政府以及企业的办公中,有相当部分数据是保密的。但是,由于技术不成熟以及设备的不完善,导致计算机中还是有众多漏洞可以被不法分子攻击,导致计算机中关键数据被窃取,更有甚者对这些信息进行篡改,导致工作单位无法正常工作。(2)现有开发软件的漏洞。我们都知道,只有计算机你只相当于有了一个处理器,要开展具体的工作,你就需要安装特定的开发软件辅助你完成具体工作。工作中,数据都会被所用软件读取,若安装软件本身存在漏洞,同样会导致用户信息以及关键信息被外泄。(3)黑客的恶意攻击。随着互联网技术的普及,互联网上面信息的价值逐渐提升,在利益的诱惑下,黑客们的恶意攻击行为也越来越多。同时,黑客中不缺运用互联网技术的顶尖高手,既然互联网技术是人发明的,那么就一定有人能够找出其中的漏洞,这同样给我们的网络安全带来很大的困扰。(4)网络安全策略相对匮乏。目前情况来看,一些中小型网站在开发设计中,虽然考虑到网络安全的问题,增加了防火墙。但为了满足客户人群的需要,扩大用户的访问权限,在实际中可能会忽略一些不法分子对权限的保留,使其达到不合法的目的。(5)网络接口的复杂化。随着互联网技术的不断发展,云存储等新型网络技术的实现,导致了资源访问方式的多样性和资源访问管理控制的复杂性。在这个庞大的复杂的数据处理过程中,极有可能会出现网络漏洞。(6)局域网的开放性。现在,我们说的互联网大部分是指广域网,其实,还有一种在企业中通常都会有的局域网。他主要实现在固定空间范围内的网络连接,以便于访问该区域内的各计算机数据,也可以称之为内网。正式这样,我们把其当成一种开放式的数据库,并不对其设置非常严格的端口切入点,这就导致其局域网内部存在着非常严重的安全漏洞。
3网络安全技术的发展
3.1网络安全技术模型
网络安全技术模型其实就是现在我们所构建的一种专门分析计算机网络缺陷的模型,它通过模拟网络攻击者攻击网络,来发现网络中潜在的漏洞,一次来分析网络的安全等级,提高计算机的安全级别。所以,为了计算机网络更加安全可靠,我们应该分析以上提到的种种问题,针对影响计算机网络安全的因素,来构建合理的网络安全技术模型。目前,计算机网络技术模型主要有两种:第一种是拓扑结构模型。这是一种点与线构成的模型,其中点就是计算机本身或可以传送信息的其他设备,线就是互联网。主要可以评估网络性能,进行资源配置。第二种是攻击模型。这种模型简单的说就是模拟黑客的攻击线路对系统进行攻击,同时对从访问权限到核心数据一系列防火墙进行全程监控,随时发现系统漏洞,进行补漏,有效地提高计算机网络的安全级别。
3.2网络安全技术发展
上述部分,通过建立网络安全技术模型可以准确的分析计算机网络中潜在的漏洞,网络安全技术的发展,就是要提前去弥补这些漏洞,提高计算网络的安全等级。下面给出计算机网络未来发展趋势的几点建议:(1)建立合理合法的安全制度,构建完善审计系统。根据网路安全技术的发展趋势,政府应该加强在网络安全方面的作用,建立一系列合理的网络安全制度。通过这些制度的建立,加强对互联网中技术以及相应知识产权的保护,为互联网提供更好的发展环境。(2)云计算技术中设置安全级别更高的密钥。云计算技术、云存储等技术作为近年来互联网技术中一种新型技术,给互联网技术的发展又打开了一扇新的窗户,但在其设计技术上依然存在着一些缺陷。这些技术上的缺陷主要体现云数据的保护方面,一些常规的加密技术很难实现对云数据的保护,因此,云计算技术、云存储等领域中的加密技术必须要升级换代,需要一种更难以破解的密钥,来保证云数据的安全性,使用户能放心使用这种新型的互联网技术。(3)建立完善的监控体系。在未来互联网技术的发展中,不仅要做到及时发现潜在的漏洞,弥补漏洞,还要建立一套完善的能够实时监测互联网数据访问的动态监控体系。通过对数据的动态监测,可以提前做出预警,能有效防止对数据的恶意破坏或窃取。(4)建立完整的评估体系。在一个完善的计算机网络安全管理系统中,一个完整的评估体系是非常有必要的,正如吾日三省吾身一样,计算机网络的安全管理也需要有一个评估体系,这将对弥补缺陷,提高工作效率有着重大的意义。
4结论
总而言之,随着现代网络技术的飞速发展,互联网技术的大规模普及,线上交易的方式不断增加,人们对互联网技术的安全问题也变得越来越重视。因此,根据现阶段网络技术安全问题的现状,结合其特有的影响因素,制定现代网络信息安全策略,把握网络安全的脉搏,构建安全的互联网环境是网络安全技术的发展趋势,也是构建现代化信息社会的必经之路。
参考文献:
[1]应钦.网络安全技术的发展现状和未来发展趋势[J].网络安全技术与应用,2015.
An Overview of Information Security Model for IOT
Shao Hua Fan Hong
(The First Research Institute of Ministry of Public Security Beijing 100048)
【 Abstract 】 The internet of things is the extension of the internet, should not only to face the traditional security issues, but also deal with new and specific security problem, which made higher requirements for security model. This article from the security protection object and way to classify the information security model for IOT, summarizes the current popular information security model for IOT, analysis the advantages and disadvantages of the existing security model, and predicts the trend of the development of the IOT information security model.
【 Keywords 】 internet of things; information security; security model
1 引言
据不完全统计,2013年,全球有120亿感知设备连接物联网,预计到2020年,有近500亿设备连接物联网,而在2008年连接在互联网上的设备将超过地球上人口的总和。如此众多设备连接上网络,其造成的危害和影响也是无法估量,特别是当物联网应用在国家关键基础设施,如电力、交通、工业、制造业等,极有可能在现实世界造成电力中断、金融瘫痪、社会混乱等严重危害公共安全的事件,甚至将危及国家安全,因此伴随着物联网快速发展,物联网安全也越来越受到重视。
信息安全模型最早可以追溯到1973年由Bell和Lapadula提出的机密性模型,但物联网涉及技术纷繁复杂、防护对象层次不齐,传统的安全模型已不再适用新的安全需求。近年来,人们在原有的模型基础上,对物联网信息安全模型做了初步探讨和研究。从安全防护对象以及方式来看,物联网信息安全模型可分为两大类:一是单层安全模型,这类模型主要侧重于物联网三层结构中某一层的安全问题,具有一定的安全防护能力,整体防护能力偏弱;二是整体防护安全模型,这类模型以整体角度分析安全防护措施,或以攻击形式考虑安全问题,或以安全技术考虑问题,不仅相同。本文综述目前已有的物联网安全模型,同时在此基础上展望了未来的研究方向。
2 单层安全模型
2.1 面向感知层安全模型
为了构建通用安全框架模型,最大程度改变当前存在安全系统、信息管理、自治管理的关系,Pierre等人提出一种自管理安全单元模型(SMSC)。该模型适用于大型分布式系统,以资源作为其安全防护对象,其中资源可以理解为连接在网络上的资产,典型的资源有应用、传感器等设备。SMSC模型具备互操作性、自动操作、权利下放和上下文前后对照下特性。互操作性是指资源可以相互通信与理解的特性,其被分为三个主要领域:通信语义、通信语法、操作的连接;自动控制是指资源根据侦听的安全威胁,自动执行安全策略进行响应。在物联网中,随着资源数量和它们之间联系的增加,人工管理效率也越来越低,因此需要系统进行自动控制;权利下放是指在实际应用中,资源不可避免地要管理下放信息的存储以及制定安全策略;上下文前后对照性是指资源必须根据不同功能、不同类型的数据进行自适应管理,安全实施必须依赖其上下文环境。
SMSC模型是基于自我管理单元模式(SMC)的模型,SMSC模型在SMC中加入了基于安全和管理的组件,通过借助于大量资源结盟潜在的影响来提高网络安全性,从而能够保证安全通信,图1为SMSC模型的逻辑视图。
SMSC模型要求资源节点具有一定的处理能力来完成自动控制功能,而在物联网应用中,特别是传感网应用中,感知节点处理能力、存储能力、能量消耗均有限,安全功能实现成本代价较高,其实际应用效果并不明显。
2.2 面向传输层安全模型
在EPC物联网体系结构中,信息传输过程中易出现隐私泄漏,其主要原因有:1)阅读器与标签之间的任意读取;2)ONS查询系统为L-ONS提供无条件查询功能;3)物品信息有R-TIS以明文形式传送给L-TIS。为此,吴政强等人提出基于EPC物联网架构的安全传输模型,该模型是面向协议,主要增强了传输过程中信息隐私的安全性。其通过引入可信第三方――可信认证服务器对原有模型进行改进:在ONS查询机制中增加了可信匿名认证过程,对L-ONS的身份合法性以及平台可信性进行认证;物品信息可信匿名传输机制确保物品信息的安全传输,物联网安全传输模型如图2所示。在传输过程中,远程物品信息服务器按响应路径各节点的顺序从后至前用公钥对物品信息嵌套加密,加密后的数据每经过一个路由节点被解密一层,直到本地信息服务器时,物品信息才被还原成明文。传输过程每个路由节点可以验证收到数据的完整性及转发路径的真实性。
物联网安全传输模型匿名认证协议具有抗被动攻击、抗主动攻击、信息泄漏量极小,路由可鉴别性、响应数据的可验证性。但由于其基于EPC网络结构,适用范围具有一定局限性。
3 整体防护安全模型
3.1 基于P2DR2的物联网安全模型
传统的安全防护方法是对系统或设备进行风险分析,制定相应的安全防护策略或部署安全设备进行防护,这种方式忽略了物联网安全的动态性,为此PDR模型应运而生,PDR是防护(Protection)、检测(Detection)、反应(Reaction)的缩写PDR模型通过Pt(攻击所需时间)、Dt(检测安全威胁时间)、Rt(对安全事件的反应时间)来描述系统是否安全,即Pt>Dt+Rt,随着技术发展,PDR模型演变为P2DR模型,后期又融合了恢复(Recovery),形成了更为完善的P2DR2的动态自适应安全模型。刘波等人提出了基于P2DR2的物联网安全模型,该模型采用动态防御的思想,结合物联网的三层体系结构,如图3所示。
基于P2DR2的物联网安全模型强调了安全防护的各个方面,各层均未给安全技术实施方法,缺乏可操作性。将P2DR2模型直接应用物联网,虽然考虑了分层结构,但各层策略(Policy)、防护(Protection)、检测(Detection)、反应(Reaction)、恢复(Recovery)实现能力层次不齐,特别是在感知层,容易出现“短板”问题。
3.2 基于等级划分的物联网安全模型
目前,国内外较为流行的无线通信协议均采用为不同安全等级应用配置不同加密等级策略的思路。我国自1994年开始实施信息安全等级保护制度来重点保护基础信息网络和关系国家安全、经济命脉、社会稳定等方面的重要信息系统。随着物联网的发展,等级保护也作为物联网安全防护的重要分支。孙知信等人提出了一种基于等级划分的物联网安全模型(BHSM-IOT),该模型以物联网攻击模型和以物联网实际应用为前提构建的物联网拓扑模型为基础,利用模糊评价方法对物联网应用进行等级划分(无安全模式,ACL模式,认证、完整性和机密性模式,认证、完整性和机密、密钥管理模式),从而部署实施不同安全配置。BHSM-IOT模式架构如图4所示,包括应用需求分析、网络拓扑分析、攻击类型预测以及应用安全等级判定四个部分,其中BHSM-IOT模型从信息系统提取关键对象进行描述:应用系统管理员(ASA)、用户(User)、维护数据单元(MDU)、系统硬件设备(SH)、应用涉及范围(AR)、应用类型(AT)和敏感数据单元(SDU)。
范红等人提出一种从横向和纵向两个方面提升物联网防护水平的物联网安全技术体系(STA-EPC),横向防御体系以国标GB25070-2010为依据,涵盖等级保护物理安全、安全计算环境、安全区域边界、安全通信网络、安全管理中心、应急响应恢复与处置六个方面,其中 “一个中心”管理下的“三重保护”是核心,物理安全是基础,应急响应处置与恢复是保障。纵深防御体系是依据保护对象的重要程度以及防范范围,将整个保护对象从网络空间划分为若干层次,不同层次采取不同的安全技术。目前,物联网体系以互联网为基础,因此可以将保护范围划分为边界防护、区域防护、节点防护、核心防护(应用防护或内核防护),从而实现如图5所示的纵深防御。STA-EPC模型满足机密性、完整性、Accountability、可用性安全属性。
上述两个安全模型均包含等级防护的思想,BHSM-IOT模型通过赋值进行定量评估信息系统等级,具有一定可操作性,但其安全技术粒度粗糙;STA-EPC模型针对40多个安全技术部署位置以及防御的层次给出了详细的描述,为了物联网安全防护提供了细粒度的操作指南。
3.3 基于三层架构的安全模型
目前较为通用的物联网架构分为三层,即感知层、网络层和应用层。Omar Said结合物联网三层架构提出了一种物联网安全模型,该模型在物联网三层架构的基础上,增加了应用安全层、网络安全层、感知安全层,如图6所示。其中应用安全层被划分局部应用安全防御和全局应用安全防御。全局应用安全防御安全级别更高,但其不能与局部应用安全防御相冲突;网络安全层分为有线网络与无线网络,无线网络安全包括无线局域网、移动通信网、传感网等,其防护技术包括密钥分发、入侵探测、身份认证等。有线网络包括传统的防火墙、路由访问控制、IPS等技术;感知安全层依据采集数据分为多媒体、图像、文本信息。多媒体数据可以通过压缩加密、时间戳、时间同步、会话认证防护安全威胁。图像数据使用图像压缩算法、循环冗余等技术保障安全。文本信息数据则通过加密、抗干扰等技术进行防护。
该模型通过能量消耗、成本、时间、安全强度参数进行了评估,随着传输量和时间的增长,其能量消耗呈现波形,趋于稳定,并且其安全强度处于80-100之间。虽然上述测试结果比较理想,但其选择的试验的安全技术相对简单,如身份认证、授权管理、时间同步均涉及。
4 结束语
综上所述,物联网安全模型的发展必须满足关键要求:1)适用于分布式拓扑架构且安全管理单元可进行自治;2)横向防御与纵深防御结合;3)需进行能量消耗、成本、时间、安全强度的评估;4)物联网安全模型涉及的安全技术应细粒度,可操作性要强;5)具有一定通用性,与物联网体系架构无关,不局限于EPC物联网、传感网等形态。
参考文献
[1] Bell D E, Lapadula L J. Secure Computer Systems: Mathematical Foundations and Model [J]. MITRE CORPBEDFORD MA, 1973.
[2] De Leusse, Periorellis, etc. Self Managed Security Cell, a security model for the Internet of Things and Services[C] First International Conference on Advances in Future Internet, 2009:45-52.
[3] Sventek J. Self-managed cells and their federation [J]. Networks and Communication Technologies, 2006, 10(2):45-50.
[4] 吴振强,周彦伟,马建峰.物联网安全传输模型[J].计算机学报,2011, 34(8):1351-1364.
[5] 刘波,陈晖等.物联网安全问题分析及安全模型研究[J].计算机与数字工程, 2012,11:21-24.
[6] 孙知信,骆冰清等. 一种基于等级划分的物联网安全模型[J].计算机工程.2011,37(10):1-7.
[7] 范红,邵华等.物联网安全技术体系研究.第26次全国计算机安全学术交流会,2011:5-8.
[8] GB/T 25070-2010,信息系统等级保护安全设计技术要求[S].
[9] Omar Said. Development of an Innovative Internet of Things Security System[J]. International Journal of Computer Science Issues.2013,10(6):155-161.
中图分类号:TP393 文献标识码:A 文章编号:1009-3044(2015)25-0013-02
随着工业自动化、全球一体化和信息化进程的不断深入,从“智慧地球”到“感知中国”概念的提出,使物联网越来越受到人们的青睐。人们更加倾向于将物联网与云计算平台有效结合,让物联网和云计算平台充分发挥各自的优势,并广泛应用于智能家农业、智能交通、智能电力、智能医疗、智能家庭、石油企业、煤矿安全生产、军事物流、灾害应急响应等领域,对人类社会产生了深远的影响。然而,物联网技术的发展不可能一蹴而就,很多技术与非技术的问题仍然令人担忧,其中安全问题更为突出。
1云计算与物联网的融合
云计算在本质上并不是一种全新的技术,它是在分布式计算、并行计算、网格计算及虚拟化的基础上发展起来的。云计算平台可以为物联网提供海量信息地存储与计算。
物联网是按照约定的协议把射频识别、全球定位系统、传感器等信息传感设备与互联网连接起来,使各传感设备之间相互进行信息的交换与传输,实现对网络的智能化识别、跟踪、监控与管理。
随着物联网的不断发展,如何对收集到的海量信息进行分析和处理是物联网面临的真正问题。解决这个问题的途径就是在物联网中融合云计算平台,因为云计算平台是一个海量信息存储和处理的平台。利用云计算搭建物联网平台可以减小成本、实现高效率计算和存储等功能,是物联网发展的必然趋势。
2 基于云计算的物联网体系结构
根据物联网的本质属性和应用特征,可以将物联网的体系架构分为三层:感知层、网络层和应用层,如图1所示[1]。
感知层,是物联网的最底层。感知层是物联网的基础部分也是关键部分,主要通过传感器、RFID、智能卡、阅读器、条形码、人机接口等多种信息感知设备,采集和识别物理世界中发生的各类物理事件和数据信息,进而全面感知与控制物理世界的各种事件与信息。
网络层,是物联网的中间层。物联网的网络层一般是在现有的互联网和通信网基础上建立的,主要包括各种无线和有线网关、核心网、接入网。它的功能主要是负责对感知层采集的数据和控制信息进行双向传递、路由和控制。
应用层,是物联网的远程终端层。物联网通过应用层与各行业专业系统相结合,对感知数据进行分析处理,然后向用户提供不同的服务,从而实现物物互联的应用方案。
3 物联网感知层的安全
感知层在物联网体系结构中处于底层,承担信息感知的重任。感知层的安全是物联网安全的重点。目前,物联网的安全威胁主要体现在以下方面:
(1)本地安全:到在一些复杂、机械和危险的工作中,经常看到物联网被应用,用来代替人工来完成这些工作。物联网中的这些感知节点大多处在无人看管的场合中,攻击者可以非常容易地接触到这些设备,进而对它们造成破坏,甚至可以通过本地操作更换软硬件。
(2)能量耗尽:是利用协议漏洞,通过持续地通信方式使节点能量资源耗尽。由于物联网中的感知节点功能非常简单、携带能量非常少,攻击者就会利用耗尽节点能量的方式以达到攻击物联网的目的。
(3)跨网认证:物联网中连接了许多不同结构的异构网络,这些异构网络要实现通信则需要跨网认证,在跨层认证的过程中经常会遇到DOS攻击、异步攻击、中间人攻击、合谋攻击等问题。
(4)隐私保护:在物联网中,每个人以及每件物品都随时随地连接在网络上,随时随地被感知,在这种环境中如何防止个人信息、业务信息被他人盗用,如何防止财产丢失,是物联网推进过程中需要突破的重大问题之一。
针对物联网中节点能力较弱的无线网络安全,主要的安全技术有:
(1)安全路由协议[2]。RFID的安全协议是物联网安全的研究热点之一,主要有基于Hash函数的RFID安全协议、基于随机数机制的RFID安全协议、基于重加密机制的RFID安全协议等。
(2)入侵检测与防御技术。由于在物联网中仅仅依靠密码体制,还不能完全抵御所有攻击,因此经常采用入侵检测技术作为信息安全的第二道防线。入侵检测主要是检测网络中违反安全策略行为,它能及时发现并报告系统中未授权或异常的操作。
(3)密钥管理[3]。加密与密钥管理是建立安全体系结构的第一步,所有的加密与认证操作均离不开加密算法与密钥管理。近年来密钥管理的研究也呈现出一些新的特点,如分层传感器网络的密钥管理等。
4 物联网网络层的安全
网络层主要实现对感知层所采集的数据和控制信息进行路由和控制,它是一个多网络叠加的开放性网络。目前物联网网络层面临的安全威胁主要有:
(1)分布式拒绝服务攻击,攻击者通过这种攻击是利用在一小段时间内发送大量的请求,使这些请求覆盖整个网络而占尽网络资源,从而减慢常规流量速度亦或完全中断。
(2) 伪造网络消息和中间人攻击 [4],伪造网络消息则是指敌手通过伪造通信网络的信令指示,从而使设备做出错误地响应,亦或使设备连接断开;中间人攻击是攻击者通过发动MITM攻击使设备与通信网失去联系或发送假冒请求和响应信息,从而影响网络的安全。
(3)跨异构网络的攻击,这种攻击一经实施将会使整个网络瘫痪。在进行攻击之前,攻击者一般首先通过某一网络取得合法的身份,然后再利用其他的异构网络进行攻击。
针对物联网网络层的安全问题,主要的安全技术如下:
(1)认证机制[5],认证主要包括身份认证和消息认证。它是指使用者通过某种方式来核对对方的身份,是通信双方可以交换会话密钥的前提。保密性和及时性是密钥交换中两个非常重要的问题。保密性是指为了防止假冒和会话密钥的泄漏,一般采用加密的方式以密文的形式来传送,而及时性则是为了避免存在消息重放。
(2)访问控制机制,目前主要采用的是基于角色的访问控制,相同的角色可以访问的资源是相同的。访问控制是指用户合法使用资源的认证和控制,在该机制中,系统给每个用户分配一个角色,用户根据角色设置的访问策略实现对资源的访问权限。
(3)加密机制,加密技术是信息安全技术的核心,在整个物联网安全中有不可替代的地位。加密技术利用密码算法将明文变换成密文信息传输至接收端,合法的接收端再利用事先约定的密销,通过解密算法将密文还原成明文信息。
5 物联网应用层的安全
云计算为物联网应用层提供了最广泛的数据交换和共享的服务平台,因此云计算平台的安全决定着物联网应用层的安全。云计算平台面临的主要安全威胁体现在以下两个方面:
(1)虚拟化带来的安全问题[6]。云计算机平台主要通过虚拟化技术实现多租户共享资源,如果没有实现对数据的加密和隔离,就使得数据完全透明,可以被其他非法用户亲自访问而带来安全问题。
(2)数据的隐私问题。用户的数据上传到“云”中之后,被随机地存储在世界各地的服务器上,用户根本无法知道自己的数据具体存储在什么位置。另一方面,云计算平台需要对数据进行分析和处理,这使得云计算平台享有对数据的优先访问权,就会导致数据的拥有者失去数据的完全控制能力。
针对上述威胁,云计算平台的安全方案主要从以下方面考虑:
(1)数据的完整性和机密性防护。物联网用户一般采取加密手段来保护数据隐私。然而使用传统的云计算平台的数据分析方法对密文的处理,将会失效。同态加密算法设计是目前对密文进行分析和处理的研究热点。
(2)数据隔离技术。在云计算平台中,存储在同一物理服务器上的不同虚拟机之间可能会出现非法访问,这会使信息引入不安全的因素。为了防止同一物理服务器上的不同虚拟用户之间非法访问,必须对用户的数据进行有效隔离,从而保证数据的安全性。
(3)保证数据存储的安全。为了保证上传到云平台的用户数据的存储安全性,除了构建可信的物联网环境,还需要采取数据备份的方式。存储设备的高扩展性、数据的兼容性以及并发访问的服务能力等是数据备份系统要充分考虑的 。
6 结束语
物联网与云计算平台的融合,加速了物联网技术的迅猛发展,充分地发挥了物联网技术在不同应用领域的优势。但由于物联网目前还没有一个统一标准的架构,因此还需要进一步研究基于物联网架构的具体安全机制,针对物联网的安全研究任重而道远。
参考文献:
[1] 丁超.IoT/CPS的安全体系结构及关键技术[J].中兴通讯技术,2011,17(1):1l-16.
[2] 王素苹.物联网感知层安全性研究综述[J].传感器与微系统,2015,34(6):6-9.
[3] 闻韬.物联网隐私保护及密钥管理机制中若干关键技术研究[D].北京:北京邮电大学,2012:21-22.
2017年全球局势将更加动荡,国家层面的网络战随时可能爆发。2016年,全球发生了如英国脱欧、土耳其未遂军事等事件,2017年这些事件将继续发酵,全球随时可能爆发区域冲突,而网络战是被优先考虑的对抗手段之一。超级大国为网络攻击的演进引领了道路,一是扩充网络部队,二是研发网络战武器。此外,美国总统特朗普上任或将在网络空间方面采取更强硬立场,全面提升美国的网络攻防能力。
第二,大规模、高价值窃密和数据泄露事件持续高发。
窃密和数据泄露多是关于高价值的信息,包括政府秘密文件、社会保障和医疗保障信息、信用卡和借记卡信息、电子邮件内容、密码等。2016年发生的重大窃密和数据泄露事件,其影响和规模之大超过了往年:2016年共发生2260起已证实的窃密和数据泄露事件;2016年企业窃密和数据泄露事件的平均损失额达400万美元,预计到2017年窃密和数据泄露造成的损失将更大。
第三,物联网设备成为攻防技术研究和网络攻击实施热点,其安全审查将受重视。
物联网设备成为攻防技术研究和网络攻击实施的热点。2016年10月,基于物联网设备的Mirai僵尸网络对美国DNS服务商Dyn发起攻击,导致美国互联网瘫痪,Twitter、Paypal、Github等大量与日常生活相关的重要网站平台无法正常访问。物联网设备的安全与大众生活和国家安全息息相关,越来越多的国家将对物联网设备加强安全审查。2016年4月,日本强化物联网安全审查,推进物联网领域通用标准制定工作。2016年8月,我国中央网信办要求在物联网安全方面推进标准的研究和制定工作。2016年11月,美国国土安全局要求物联网制造商必须在产品设计阶段确保其安全性,否则将面临被的可能。2016年,美国土安全部《物联网安全战略指导原则》向物联网设备和系统开发商、制造商、管理者提供安全建议,以减少物联网设备被攻击的可能。2017年,更多国家将加强物联网设备的安全审查,提高对物联网设备厂商的要求。
第四,云端安全不断改善,但云端攻击造成的危害将不断加深。
大型云供应商运营的经验和技术日益成熟,网络攻击造成云故障的频率在减少,但云服务供应商仍是高价值攻击目标之一。2017年,云端攻击数量可能会减少,但造成的危害将不断加大。许多公司或政府机构迫于速度、效率和成本的压力,将数据存储在受信任网络或迁移到云中,而控制性、可见性、安全性等方面的脱节可能会导致数据泄露。犯罪分子将继续探索新的攻击方式,而凭据和身份验证系统仍可能是最主要的被攻击点。
第五,关键基础设施安全面临巨大挑战。
关键基础设施一旦遭到破坏或功能丧失,就会危及国防安全、国家经济安全、公众健康和社会稳定。2017年,关键基础设施仍将面临巨大的安全挑战。一是关键基础设施是具有高价值的攻击目标,将优先被深挖漏洞;二是联网和自带设备办公等趋势不可逆,将有更多的关键基础设施设备被暴露在网络上;三是工控搜索引擎可快速发现联网工控设备并发现其脆弱性。
第六,勒索软件仍是网络犯罪分子的掘金利器。
2016年,超过62个最新勒索软件家族出现,带有勒索软件的攻击数量同比增长60倍,勒索软件赎金高达10亿美元。据统计,70%的商业用户向黑客支付了赎金,大部分勒索软件能实际获取300美元以上赎金。在巨大经济利益的驱动下,勒索软件强劲的增长态势将会在2017年延续下去。在技术层面,不断发生的大规模数据泄露事件,将强力助推勒索软件实现自动化,降低犯罪活动的技术成本;在安全防护层面,潜在受害者没有合适的分析决策机制以恰当防范此类威胁,使得基于勒索的攻击拥有很广泛的目标基础;在产业层面,勒索软件目前已基本形成完善的商业模式,代码编写者和网络犯罪分子共享利益分成。
第七,毫无经验的攻击者仍可大做文章。
以2016年PatchworkAPT攻击为例,该APT攻击所使用的代码全部是通过复制、粘贴互联网公开代码组合而成,其对多个国家的重要行业和关键领域构成了严重的安全威胁。在攻击目标上,包括中国、美国、日本、英国等国家;在攻击领域上,包括公共部门、公有企业、非政府组织、以及航空、广播、能源、金融、制药、出版、软件等领域。攻击者并不需要知道网络攻击的具体细节,主要通过购买黑客工具来达到目的,能在投入极小的情况下,对机构造成巨大的经济损失,或对国家安全构成极为严重的威胁。
第八,威胁情报将在风险管理决策中扮演更重要的角色。
威胁情报和大数据安全分析、基于攻击链的纵深防御等思想正在形成新一代防御体系的基石。政府与企业开始建立协同联动机制,利用威胁情报做防护实战演练,建立以数据为核心的开放共享的安全威胁情报生态。威胁情报将在风险管理决策中扮演更重要的角色。2017年,政府、企业和组织在风险管理决策中充分利用威胁情报将是大势所趋。
第九,网络安全态势催使人工智能和机器学习快速发展。
面对高等级人才严重不足的局面,网络安全行业迫切需要自动化、智能化解决方案来改善防御体系,这将直接促使人工智能技术和机器学习技术的发展。2016年,已有大量网络安全公司投资人工智能和机器学习,2017年此领域将继续保持投资热度,并可能有较成熟的产品投入到网络安全防御体系中。
中图分类号:TM215 文献标识码:A 文章编号:1009-914X(2017)12-0311-01
前言:在信息化潮流的引导下,互联网的飞速发展给人们的生活带来便捷,人们对互联网的依赖程度加大。但是,近年来计算机网络面临的威胁越来越多的人为攻击事件,数量剧烈上升趋势。人们的利益受到威胁,对互联网的放火墙安全性能产生不信任。所以,下一代防火墙的安全性值得我们探究和思考,争取解决下一代互联网的安全威胁。
1.研究防火墙安全特征
1.1 互联网面对的安全威胁
自莫里斯蠕虫病毒出现以来,病毒的数量呈爆炸式增长,安全漏洞数量增长较快,系统或软件的严重级别漏洞增多。同时,黑客等网络不法分子通过网络技术,攻破用户防火墙,带来安全威胁。对于银行系统、商业系统、政府和军事领域而言,这些比较敏感的系统和部门对公共通信网络中存储与传输的数据安全问题尤为关注。目前,最常见的安全问题是网络协议和软件的安全缺陷、计算机病毒、身份信息窃取、网络钓鱼诈骗及分布式拒绝服务。其中计算机病毒并不独立存在,而是寄生在其他程序之中,所以,它具有隐蔽性、潜伏性、传染性和极大的破坏性。身份信息的窃取也是值得我们注意的。随着互联网金融的发展,人们的身份信息与银行资产很容易被黑客侵入,个人和企业的信息轻而易举被窃取,造成巨大损失。以上种种安全问题都需要下一代防火墙提高安全特性。
1.2 目前防火墙的安全技术标准
在2005、2006年,防火墙标准进行了重新编制,只针对包过滤和应用级防火墙技术,其中服务器要求和并列到应用级防火墙技术中进行描述。先后形成了《GB/T20010―2005信息安全技术包过滤防火墙评估准则》。GB/T20281―2006标准则吸收了原来国家标准的所有重要内容。该标准将防火墙通用技术要求分为功能、性能、安全和保证四大。其中,功能要求是对防火墙产品应具备的安全功能提出具体的要求,包括包过滤、应用、内容过滤、安全审计和安全管理等;安全要求是对防火墙自身安全和防护能力提出具体的要求;保证要求则针对防火墙开发者和防火墙自身提出具体的要求。性能要求是对防火墙产品应达到的性能指标做出规定。同时,将防火墙产品进行安全等级划分。安全等级分为三个级别,逐级提高,功能强弱、安全强度和保证要求的高低是等级划分的具体依据,功能、安全为该标准的安全功能要求内容。这是我国信息安全标准中第一次将性能值进行量化的标准。
1.3 采用防火墙系统的必要性
随着越来越多重要的信息应用以互联网作为运行基础,信息安全问题已经成为威胁民生、社会、甚至国家安全的重要问题。从计算机网络安全技术的角度来看,防火墙是指强加于两个网络之间边界处,以保护内部网络免遭外部网络威胁的系统或者系统组合。防火墙技术作为保护计算机网络安全的最常用技术之一,当前全球约有三分之一的计算机是处于防火墙的保护之下。防火墙在不危机内部网络数据和其他资源的前提下,允许本地用户使用外部网络资源,并将外部未授权的用户屏蔽在内部网络之外,从而解决了因连接外部网络所带来的安全问题。
2.分析下一代防火墙的发展趋势
2.1 防火墙发展的新技术趋势
就目前国内形势而言,下一代防火墙发展的新技术趋势有四方面。随着运行商、金融、大型企业的数据中心等用户对安全的关注,对防火墙高吞吐量、高性能连接处理能力的要求越来越迫切。传统的硬件构架已经无法满足用户的需求,因此多核处理,ASIC加速芯片处理等技术纷纷登场,高性能成为新的技术趋势。虽然IPv6在目前推广和普及的力度较大,但新的安全问题也逐渐产生。在纯IPv6网络中,IPv6端与端的IPSec以及最终拜托NAT的发展构架对防火墙产品的冲击影响较大,但在IPv4/6共存阶段,针对不同过渡协议混杂的背景,防火墙产品还是有着技术发展和实现的需求,所以使防火墙适用于IPv4/6也是重要技术趋势之一。基于防火墙用户的配置策略,应用深层控制技术开始越来越多的被提及。同时,随着云时代的到来,各类云服务逐渐进入普通大众的生活。防火墙的安全性能也伴随着云技术的发展开发出云服务虚拟化技术。
2.2 下一代互联网高性能防火墙标准
据国家标准化管理委员会2013年下达的国家标准制修订计划,对原有《GB/T20281-2006信息安全技术防火墙技术要求和测试评价方法》进行修订,由于下一代互联网的特性是防火墙功能属性,所以维持原有标准名称。该标准与GB/T20281-2006的主要差异是增加了高性能防火墙的描述,增加了防火墙的功能分类,加强了防火墙的应用层控制能力,增加了下一代互联网协议支持能力的要求,级别统一划分为基本级和增强级。该标准安全功能主要对产品实现的功能进行了要求。主要包括网络层控制、应用层控制和安全运维管理三部分,其中网络层控制主要包括包过滤、NAT、状态检测、策略路由等方面。这些安全功能新标准要求将大大提高下一代防火墙的安全特性。在环境适应性要求方面,该标准对下一代防火墙产品的部署模式及下一代互联网环境的适应性支持进行了要求。同时,该标准的性能要求对下一代防火墙的吞吐量、延迟、最大并发连接数、最大连接速率和最大事务等性能指标进行了要求。
2.3 网络安全的实现
网络安全的实现是多方面的。访问控制是网络安全防御和保护的主要策略。进行访问控制的目的是保护网络资源不被非法使用和非法访问。控制用户可以访问网络资源的范围,为网络访问提供限制,只允许访问权限的用户访问网络资源。且随着当前通信技术的快速发展,用户对信息的安全处理、安全存储、安全传输的需要也越来越迫切,并受到了广泛关注。信息在网络传输的安全威胁是由于TPC/IP协议所固有的,因此数据加密技术成为实现计算机网络安全技术的必然选择。病毒防护主要包括计算机病毒的预防、检测与清除。最理想的防止病毒攻击的方法就是预防,在第一时间内阻止病毒进入系统。攻击防御对网络及网络设备的传输行为进行实时监视,在恶意行为被发动时及时进行阻止,攻击防御可以针对特征分析及分析做出判断。同时,网络安全建设“三分技术,七分管理”。因此,除了运用各种安全技术之外,还要建立一系列安全管理制度。使下一代防火墙真正的起到安全作用。
结语
总而言之,事物的发展过程是曲折的,前途是光明的。随着人类在经济、工业、军事领域方面越来越多地依赖信息化管理和处理,由于信息网络在设计上对安全问题的忽视,以及爆发性应用背后存在的使用和管理上的脱节,使互联网中信息的安全性逐渐受到严重威胁,实用和安全矛盾逐渐显现。而下一代防火墙的安全特性随着互联网的发展是不断改进,进行高性能技术的研究,已有所成果。所以,关于下一代防火墙的安全特性我们要抱有积极的态度。
摘要: “大数据”时代的到来,进一步推动了计算机、网络及存储技术的发展,同时也引发了更多新的安全问题。本文从“大数据”的定义出发,对其技术特征进行了简要介绍,重点分析了“大数据”面临的安全问题,并对“大数据”安全的发展趋势进行了展望。
关键词 : 大数据;信息安全;防护
中图分类号:TP393 文献标识码:A 文章编号:1006-4311(2015)03-0201-02
作者简介:乔书芳(1963-),男,河北栾城人,河北检验检疫局信息化处处长,研究方向为信息化;赵巍(1981-),女,河北霸州人,信息化处副科长,研究方向为信息化。
0 引言
随着云计算、移动互联网和物联网等新兴信息技术的蓬勃兴起,各类信息数据正在迅速膨胀变大。“大数据”作为一种重要的战略资产,已经渗透到当今每一个行业和业务职能领域。随着数据结构不断变化和数据格式的日趋复杂化,安全已成为“大数据”时代尖锐的问题。企业内部交易信息、互联网商品物流信息,互联网用户交互信息、位置信息等,都面临被监控的威胁和隐私被侵犯的隐忧,大数据似乎让隐私无处安放。“斯诺登”事件就是一个典型的通过分析海量通讯数据获取大数据的案例。如何对“大数据”资源进行有效的安全保护,成为目前现阶段社会各界共同关注的问题,也给信息安全带来了新的机遇和挑战。
1 “大数据”的内涵
1.1 “大数据”定义 所谓大数据(big data),或称巨量资料,通常情况下,是指涉及的资料规模庞大,在现有的技术条件的基础上,难以通过主流软件,在合理时间内对其进行撷取、管理、处理。
对于“大数据”来说,其特征主要表现为:一是数据量(volumes)大,在实际应用中,把多个数据集放在一起,形成PB级的数据量。根据IDC(国际数据公司)的监测统计,2011年全球数据总量已经达到1.8ZB;二是数据类别(variety)大,数据来自多个数据源,无论是种类,还是格式,数据日趋丰富,以前所限定的结构化数据范畴等,已经被冲破,半结构化和非结构化数据早已囊括其中;三是数据处理速度(Velocity)快,在数据量非常庞大的情况下,能够对数据进行实时的处理;四是数据具有较高的真实性(Veracity),随着社交数据、物联计算、交易与应用数据等新数据源的兴起,冲破了传统数据源的局限,在这种情况下需要有效的技术,进一步确保数据的真实性、安全性。
1.2 “大数据”技术 “大数据”的价值不只在于其数据量之大,更大的意义在于通过数据采集、处理、分析、挖掘等技术对“大数据”的属性,包括数量、速度、多样性等等进行分析,能获取很多智能的、深入的、有价值的信息。而这些信息提取过程可大致分为以下三个阶段,如图1。
1.2.1 数据输入 将分布的、异构数据源中的关系数据、平面数据等数据进行采集抽取,然后对其进行清洗、转换、集成等,最后将数据加载到数据仓中,进而为数据联机分析、挖掘等处理奠定基础。其特点主要表现为并发数高,因为成千上万的用户有可能同时访问、操作数据,比较典型的就是火车票售票网站、淘宝等,在峰值时,它们并发的访问量能达到上百万,在这种情况下,在采集端需要部署大量数据库。
1.2.2 数据处理 “大数据”技术核心就是数据挖掘算法,基于不同的数据类型和格式的各种数据挖掘的算法深入数据内部,快速地挖掘出公认的价值,科学地呈现出数据本身具备的特点。并根据用户的统计需求,对存储于其内的海量数据利用分布式数据库或分布式计算集群进行普通的分析和分类汇总等。其特点主要表现为用于挖掘的算法比较复杂,并且计算涉及的数据量和计算量都很大,常用数据挖掘算法都以单线程为主。
1.2.3 数据输出 从“大数据”中挖掘出特点,科学的建立模型,通过导入数据,以得到用户需要的结果。这已在能源、医疗、通信、零售等行业有了广泛应用。
2 “大数据”安全隐患
“大数据”时代,数据量是非线性增长的,随着数据价值的不断提高,黑客对于数据的觊觎已经由原来的破坏转变成窃取和利用,病毒或黑客绕过传统的防火墙、杀毒软件、预警系统等防护设备直接进入数据层,一些高级持续性攻击已经难以用传统安全防御措施检测防护。“大数据”的安全风险主要可以分为以下两个方面。
2.1 从基础技术角度看 NoSQL(非关系型数据库)是“大数据”依托的基础技术。当前,应用较为广泛的SQL(关系型数据库)技术,经过长期的改进和完善,通过设置严格的访问控制和隐私管理工具,进一步维护数据安全。在NoSQL技术中,没有这样的要求。而且,对于“大数据”来说,无论是来源,还是承载方式都比较丰富,例如物联网、移动互联网、车联网,以及遍布各个角落的传感器等,通常情况下,数据都是处于分散存在的状态,难以对这些数据进行定位,同时难以对所有的机密信息进行保护。
2.2 从核心价值角度来看 “大数据”技术关键在于数据分析和利用,但数据分析技术的发展,对用户隐私产生极大的威胁。在“大数据”时代,已经无法保证个人信息不被其他组织挖掘利用。目前,各网站均不同程度地开放其用户所产生的实时数据,一些监测数据的市场分析机构可通过人们在社交网站中写入的信息、智能手机显示的位置信息等多种数据组合,高精度锁定个人,挖掘出个人信息体系,用户隐私安全问题堪忧。
3 “大数据”安全防范
由于“大数据”的安全机制是一个非常庞大而复杂的课题,几乎没有机构能一手包揽所有细节,因此业界也缺乏一个统一的思路来指导安全建设。在传统安全防御技术的基础上,通过对“大数据”攻击事件模式、时间空间特征等进行提炼和总结,从网络安全、数据安全、应用安全、终端安全等各个管理角度加强防范,建设适应“大数据”时代的安全防御方案,可以从一定程度上提高“大数据”环境的可靠度。
3.1 网络安全 网络是输送“大数据”资源的主要途径,强化网络基础设施安全保障,一是通过访问控制,以用户身份认证为前提,实施各种策略来控制和规范用户在系统中的行为,从而达到维护系统安全和保护网络资源的目的;二是通过链路加密,建立虚拟专用网络,隔离公用网络上的其他数据,防止数据被截取;三是通过隔离技术,对数据中心内、外网络区域之间的数据流量进行分析、检测、管理和控制,从而保护目标数据源免受外部非法用户的侵入访问;四是通过网络审计,监听捕获并分析网络数据包,准确记录网络访问的关键信息;通过统一的策略设置的规则,智能地判断出网络异常行为,并对异常行为进行记录、报警和阻断,保护业务的正常运行。
3.2 虚拟化安全 虚拟机技术是大数据概念的一个基础组成部分,它加强了基础设施、软件平台、业务系统的扩展能力,同时也使得传统物理安全边界逐渐缺失。加强虚拟环境中的安全机制与传统物理环境中的安全措施,才能更好地保障在其之上提供的各类应用和服务。一是在虚拟化软件层面建立必要的安全控制措施,限制对虚拟化软件的物理和逻辑访问控制;二是在虚拟化硬件方面建立基于虚拟主机的专业的防火墙系统、杀毒软件、日志系统和恢复系统,同时对于每台虚拟化服务器设置独立的硬盘分区,用以系统和日常数据的备份。
3.3 数据安全 基于数据层的保护最直接的安全技术,数据安全防护技术包括:一是数据加密,深入数据层保护数据安全,针对不同的数据采用不同的加密算法,实施不同等级的加密控制策略,有效地杜绝机密信息泄漏和窃取事件;二是数据备份,将系统中的数据进行复制,当数据存储系统由于系统崩溃、黑客人侵以及管理员的误操作等导致数据丢失和损坏时,能够方便且及时地恢复系统中的有效数据,以保证系统正常运行。
3.4 应用安全 由于大数据环境的灵活性、开放性以及公众可用性等特性,部署应用程序时应提高安全意识,充分考虑可能引发的安全风险。加强各类程序接口在功能设计、开发、测试、上线等覆盖生命周期过程的安全实践,广泛采用更加全面的安全测试用例。在处理敏感数据的应用程序与服务器之间通信时采用加密技术,以确保其机密性。
3.5 终端安全 随着云计算、移动互联网等技术的发展,用户终端种类不断增加,很多应用程序被攻击者利用收集隐私和重要数据。用户终端上应部署安全软件,包括反恶意软件、防病毒、个人防火墙以及IPS类型的软件,并及时完成应用安全更新。同时注重自身账号密码的安全保护,尽量不在陌生的计算机终端上使用公共服务。同时还应采用屏蔽、抗干扰等技术为防止电磁泄漏,可从一定程度上降低数据失窃的风险。
4 “大数据”安全展望
“大数据”时代的信息安全已经成为不可阻挡的趋势,如何采用更加主动的安全防御手段,更好地保护“大数据”资源将是一个广泛而持久的研究课题。
4.1 重视“大数据”及建设信息安全体系 在对“大数据”发展进行规划的同时,在“大数据”发展过程中,需要明确信息安全的重要性,对“大数据”安全形式加大宣传的力度,对“大数据”的重点保障对象进行明确,对敏感、重要数据加大监管力度,研究开发面向“大数据”的信息安全技术,引进“大数据”安全的人才,建立“大数据”信息安全体系。
4.2 对重点领域重要数据加强监管 海量数据的汇集在一定程度上可能会暴露隐私信息,广泛使用“大数据”增加了信息泄露的风险。政府层面,需要对重点领域数据范围进行明确,制定完善的管理制度和操作制度,对重点领域数据库加大日常监管力度。用户层面,加强内部管理,建立和完善使用规程,对“大数据”的使用流程和使用权限等进行规范化处理。
4.3 加快研发“大数据”安全技术 传统信息安全技术不能完全适用于新兴的“大数据”领域,云计算、物联网、移动互联网等新技术的快速发展,对“大数据”的收集、处理和应用提出了新的安全挑战。加大“大数据”安全技术研发的资金投入,提高“大数据”安全技术产品水平,推动基于“大数据”的安全技术研发,将有利于“大数据”更好地推动国家和社会发展。
参考文献:
[1]维克托·迈尔-舍恩伯格.大数据时代[M].浙江人民出版社,2013.
[2]徐立冰.云计算和大数据时代网络技术揭秘[M].人民邮电出版社,2013.
什么是云计算,各家学者给出了近乎百种解释,其中最权威的是美国国家标准与技术研究院(NIST)定义:云计算是一种按使用量付费的模式,这种模式提供可用的、便捷的、按需的网络访问,进入可配置的计算资源共享池(资源包括网络、服务器、存储、应用软件、服务),这些资源能够被快速提供,只需投入很少的管理工作,或与服务供应商进行很少的交互。
2 西藏高校电子政务安全隐患
西藏地处我国边陲,信息技术发展一直滞后内地省份,同时因特殊的政治因素,网络技术、信息安全备受关注。虽然西藏自治区及各高校加大力度引进网络人才,但因地理环境等因素,西藏高校一直因缺少计算机专业人才,使得网络管理和建设存在很多安全问题。当前,西藏高校电子政务面临恶意攻击、计算机病毒,敌对势力也通过网络、消息、邮件等方式入侵用户系统,以及内部人员没有履行好自己职责,进行的有意或无意破坏等。
针对如此严峻的网络安全问题,以及西藏高校网络基础设施不完善,教育资源匮乏,网络管理人员稀缺等问题,云计算技术将大步提升西藏高校校园电子政务水平,提高教师、学生信息素养,创设云教育新理念,高度整合现有资源,从而缩小与内地高校电子政务差距,仅需要向云服务商按需支付少量的费用。
3 云计算环境下西藏高校电子政务安全技术
云计算安全对电子政务安全起到至关重要的作用,相关的数据安全技术包括容灾备份与数据恢复、数据加密技术、可信云计算技术、虚拟化安全技术等。
3.1 容灾备份与数据恢复
容灾备份9与数据恢复可以在云数据遭到系统故障或人为原因造成数据丢失等情况时,快速恢复丢失数据,保证云计算数据的完整性和服务可靠性,可采用异地容灾和数据备份机制、基于HDFS的数据冗余备份方案等来实现。
3.2 数据加密技术
数据加密技术是保证云数据完整性和安全性的重要技术,加密技术有对称加密和非对称加密。
对称加密也叫私钥加密,其加密和解密使用相同的加密算法。通过解密密钥可以推出加密密钥,也可通过加密密钥推出解密密钥。因此对称加密的安全性不仅取决于加密算法本身,密钥管理的安全更重要。常用的对称加密算法有:DES、3DES、TDEA、Blowfish、RC5、AES等。
非对称加密有两个密钥,公开密钥和私有密钥。若用公开密钥加密,就用私有密钥才能解密;若用私有密钥加密,就只能用公开密钥解密。这种加密技术算法复杂,安全性依赖于算法和密钥,但是速度没有对称加密快。常见的有RSA、Elgamal、Rabin、D—H、ECC(椭圆曲线加密算法)等。
3.3 可信云计算技术
可信云计算技术就是在云服务商与云用户之间找到双方都认可的可信第三方,有效提高整个计算系统的安全性技术。构建可信云计算时的关键,
(1)基础设施、平台与服务优质;
(2)云计算隐私保护要好;
(3)云计算中数据的用户可感知性强;
(4)云计算中用户对重要数据的可控性;
(5)云计算的可信性;
(6)云计算的保障性,即完善的管理,有法律保障。
可信云计算技术比传统数据中心更安全、性能更可靠。
3.4 虚拟化安全技术
虚拟化技术是云计算的核心技术,运用到云安全中,在一定程度上降低了硬件成本和管理成本。虚拟化技术包括应用虚拟化、服务器虚拟化、网络虚拟化和存储虚拟化。虚拟化安全技术具有强大和快速的灾难恢复和备份机制,统一和快速的补丁和脆弱性修复能力,防御和分析恶意攻击能力,数据集中化,利于防止敏感信息泄露,客观上隔离了安全风险。
4 结语
随着高校电子政务的任务不断增加,安全问题越显严峻,西藏高校特殊的地理环境和政治因素对电子政务提出更高要求。云计算环境使得西藏高校电子政务有了更加安全的保障,有效提高校园电子政务工作效率和办公透明度,降低了成本。
参考文献
[1]宋伟东等.用大数据思维建构信息时代的电子政务[J].测绘科学,2014(05):18-22.
[2]吕琴.云计算环境下数据存储安全的关键技术研究[D].贵州大学,2015.
[3]徐文杰.云计算数据安全技术研究[D].上海交通大学,2015.
[4]吴晓娟等.影响我国电子政务横向整合的因素研究——以湖北省为例[J].现代情报,2015(06):49-53.
日前,国内网络信息安全行业领军企业启明星辰及终端安全领域领军企业北信源宣布成立合资公司。双方通过这次合作整合资源旨在打造企业级防病毒第一品牌,同时也将实现防病毒技术与其他终端防护技术的充分融合。
启明星辰认为,从技术发展趋势来看,随着“云物移社大智随”(云计算、物联网、移动互联网、社交网络、大数据、智慧城市、随身智能等)的发展,终端安全防护技术也在不断变化,启明星辰通过此次合作将新公司的防病毒技术与自身的终端技术融合,在强化传统终端安全防护能力的同时,同步提升对移动终端、物联网终端、社交网络前端、可穿戴设备等智能终端领域的安全能力覆盖。再与集团公司其他产品线形成整体,成为启明星辰布局云管端以形成全天候、全方位的企业网络安全态势感知体系的重要组成部份。这次合作也意味着启明星辰继续加强企业级网络信息安全市场布局,特别是中小企业市场的布局。
北信源作为国内终端安全领域的领军企业,通过此次合作将进一步提升公司在信息安全领域的整体优势,强化公司在终端安全领域的领先地位,有效提升终端入口的技术能力及市场占有率。北信源掌门人及合资公司董事长林皓表示,合资公司的成立将结合终端发展的多元化、智能化等特点,采用云计算、物联网、大数据、机器学习等新技术,对传统产品进行升级改造,为用户提供更精准、更高效、更智能的病毒/木马查杀和综合安全防护能力,打造全新的网络安全服务平台。通过本次合作,北信源将加快企业级网络安全市场布局,同时快速向互联网领域转化,为公司信息安全、大数据、移动互联网发展战略提供更坚实的平台。
新合资公司辰信领创CEO吴俣向记者表示:合资公司在安全技术和产品层面,将完善并提升在传统终端和智能终端防护技术及产品的核心竞争力,并将整合合作各方的资源,打造国内一流的病毒及恶意代码防范技术研发团队,将各方优秀的专业安全能力融入产品和服务,实现从终端到云端的完整的、全方位的、立体化的安全防护体系。
作为合资公司在防病毒领域的重要合作伙伴,腾讯公司副总裁马斌表示,本次启明星辰与北信源的合作是启明星辰与腾讯合作“云子可信网络防病毒系统”的延续,为的是能够让更多的企业和客户,用到更好的产品。在产品技术方面,腾讯将与辰信领创更加深入的合作。同时,在互联网信息安全领域的市场,腾讯坚持搭建一个开放、合作、共享的平台,与更多企业进行合作。
中图分类号:TP393 文献标识码:A 文章编号:1009-3044(2012)36-8805-03
随着高速互联网的逐渐普及,无线传感器网络(WSN, Wireless Sensor Networks)的不断发展,移动互联网的快速成长,以及各国政府、企业、学术界的推动,使得物联网迅速掀起一片关注热潮。物联网(IOT, Internet of Things)就是把传感器网络连接互联网上,实现自动化感知、传输、处理的一种智能网络。物联网其实是互联网的拓展和延续,并最终实现物物相联[1]。
1999年MIT(美国麻省理工学院)Auto-ID Center提及了EPC、RFID、物联网的概念,受到美国各界的高度重视[2]。进入本世纪后,物联网受到世人广泛关注。2005年11月17日,ITU(国际电信联盟)在突尼斯举办的WSIS(信息社会世界峰会)上,了“ITU Internet Reports 2005: The Internet Of Things”,会议报告中正式提出了物联网的概念[3],在信息产业发展中具有里程碑式的意义,标志着物联网时代的到来。
因为物联网是公共互联网、传感器网络、移动互联网等多网异构的融合网络,所以我们不得不面对复杂多样的安全威胁和隐患。随着国内外高校和科研院所、企业界展开对物联网研究,也取得一些研究成果。文献[4]对物联网的隐私和安全问题进行了概述,讨论了安全性、保密性及安全问题的发展趋势及影响。文献[5]讨论了未来物联网发展过程中可能出现的互联网安全和隐私方面的问题。文献[6]提出了一种新的安全数据交换协议,该协议结合了Hash和流密码加密算法。文献[7]介绍了隐私、信任和互动的物联网。文献[8]着重对基于RFID的物联网系统的隐私、尊重和安全方式进行研究,并给出相应的可靠解决方案。
该文探讨了物联网的体系架构,并对物联网的不同层次的安全威胁给出安全体系架构和安全技术方案。
1)感知层
感知层的主要任务是感知识别,它是物联网的关键技术[9]。感知层通过RFID、二维条形码、传感器、摄像头、智能设备、GPS等采集设备感知并接收数据,并以有线或无线方式传输接收到的数据。RFID技术是物联网感知识别中的一项重要技术。
2)传输层
传输层主要是将感知层所采集到的数据上传到互联网,为应用层服务。传输层主要依靠互联网和NGI(下一代互联网)平台,支持IPV4及IPV6互联网协议[10],通过各种有线或无线接入方式(GSM、3G、4G、WiMAX、WiFi、卫星等)连入互联网,达到数据流量实时传送的要求。核心网络平台要具备高性能、鲁棒性且支持异构融合、可扩展的特点。传输层主要技术有:数据安全传输技术(IPsec)、异构网络接入和管理技术、长距离网络数据通信协议、信息安全和隐私保护技术等。
3)应用层
应用层主要实现对数据的处理和应用,最终为用户服务。应用层对数据的存储和处理,并为智能决策支持提供依据[11]。核心技术有:数据存储技术、数据挖掘、中间件、运筹学、云计算等技术。物联网在智能交通、物流监测、医疗、铁路、电网、公路、建筑、桥梁、煤矿、隧道等领域有着广泛的应用。
2 物联网的安全威胁分析
按照物联网的体系结构,可以根据如下三个层面来分析联网的安全威胁。
2.1 感知层的安全威胁
1)恶意窃取、篡改并盗用感知数据
通过对无线传感网中感知设备的非法窃听来取得数据,进而篡改并盗用有效数据,以达到非法的目的。一般无线传感网都处于自管理、自控制、自恢复的状态,一般不需人为干预,攻击者会非法盗用无线信号来干扰感知设备,进而达到完全控制智能感知设备(节点设备处于失效状态),并获取合法数据为其所用。在M2M网络中,攻击者通过非法侦听无线传感网和互联网上的数据链,窃取到用户密码、加、解密密钥及控制信息,从而以合法身份非法访问,造成严重的安全隐患[12]。
2.2 传输层的安全威胁
1)骨干网络的安全隐患
在各感知节点把采集的海量数据上传过程中,对骨干网络的性能和安全有更高的需求。由于物联网的感知节点数量规模庞大,会产生海量的感知数据,加上各种管理、监测、分析等大数据要及时传送,会使骨干网络报错丢包或拥塞瘫痪,导致不能及时提供服务。
2)多网异构融合的安全隐患
物联网和当前的许多不同架构的网络存在着互相连接、互相通信的问题,以及由此带来的安全隐患。特别是异构的多种网络需要深度融合的时候,就涉及到相互通信、认证授权、密钥协商、身份验证等问题,加上传统互联网的体系架构存在着先天的安全性不足的问题,会给攻击者发起各种攻击(拒绝服务攻击、中间人攻击、假冒攻击等)提供机会。
2.3 应用层的安全威胁
1)数据和软件系统的安全隐患
信息是物联网的重要组成部分,海量数据信息构成的数据库系统更是智能计算、挖掘和决策的依据[14]。物联网会把海量数据智能处理的结果转化为对实体的智能控制,所以安全性贯穿于数据链始终。在数据智能处理过程中需要涉及到并行计算、数据融合、语义分析、数据挖掘、云计算等核心技术,其中云计算尤为重要,云计算承担着海量数据的高效存储及智能计算的任务。这些新兴技术的使用会给攻击者提供截取、篡改数据的机会,同时会利用软件系统的漏洞、缺陷,并对密钥进行破解,达到非法访问数据库系统的目的,造成重大损失。
2)隐私的问题
由于物联网应用中会涉及到大量的个人隐私,特别是定位技术的出现,使得公众的隐私安全性显得尤为突出。攻击者会利用窃取通信数据来收集相关个人隐私信息(位置、出行、消费、通信等),给公众带来个人安全和财产损失的隐患。攻击者还可能会篡改、伪造信息,以合法身份进行不法行为。
设备安全是感知层安全的重要方面。感知层中主要分为感知安全和识别安全两方面,其中关键技术有传感器技术、RFID技术等技术。传感器网络需要保证信息安全和各传感节点的安全,要求有高安全的加密算法和密钥管理系统,确保数据的保密性、完整性、准确性和不可否认性。还要设计高安全性的数据传输体系,以免被攻击者非法获取。RFID安全除无线安全和标签安全外,还需要设计防冲突算法,如时分多址(TDMA)就是一种高效的防冲突算法,确保阅读器有序地读取标签信息。
传输层安全主要包括网络通信和网络安全[15]。在网络通信中数据加、解密算法必不可少,再加上安全的密钥分发机制,保证各节点数据能安全传送。物联网主要有传感器网络、无线网络、移动网络三种接入方式,导致安全技术比较复杂,可采用不同的安全机制来满足多网异构融合的安全需求。在多网异构需要深度融合的时候,需要采用身份验证授权机制,阻止非法访问。路由安全有互联网协议体系安全,无线网和移动网络需要设计路由算法,以达到最优化、高效可靠的安全路由选择目的。物联网要有网络入侵的判断检测机制,并根据入侵的不同情况进行针对性的处理,容错性是设计时的主要指标。另外还要依靠流量控制、网络隔离等手段对网络进行安全保护。防火墙能制定安全的访问控制策略,隔离不同类型的网络,从而保证网络安全。
应用层安全融合了多层级的安全[16],除感知层和传输层的安全体系外,也有本层的自身安全特点。信息处理安全和数据安全,以及不同应用领域的安全因素,构成了应用层安全。访问控制和安全审计是安全策略的常用手段,对访问者的身份进行确认并分级,根据不同的权限允许不同的操作,并记录以备查。应用层需要建立一套安全预警、检测、评估和处理的管理平台,以应对复杂多变的安全隐患。
4 结束语
随着世界各国对物联网研究的不断深入,各类应用与人们的工作、生活紧密结合的时候,物联网安全将变得越来越重要。当然物联网的安全体系架构是项整体工程,并不仅仅依靠安全协议算法和技术,而是按照物联网的安全需求,做好顶层设计,考虑整个系统的高安全性和成本因素。而且随着物联网的逐步发展,必将出现新的安全威胁,个人安全隐私也变得日益重要,需要所有关心物联网安全领域的科技人员一起深入研究。
参考文献:
[1] 刘云浩.物联网导论[M].北京:科学出版社,2010.
[2] Floerkemeier C, Langheinrich M, Fleisch E, et al. The Internet of Things[C]//Proceedings of the First International C on ferencef or Industry and Academia. Zurich,Switzerlan d: Springer, 2008: 49-52.
[3] International Telecommunication Union, Internet Reports 2005: The Internet of things[R]. Geneva: ITU,2005.
[4] Medaglia C M, Serbanati A. An Overview of Privacy and Security Issues in the Internet of Things [C]. Proceedings of 20th Tyrrhenian International Workshop on Digital Communications, New York: Springer-Verlag, 2010, 389-395.(下转第8824页)
(上接第8807页)
[5] Schmidt J M. Secure Implementations for the Internet of Things [C]. InfoSecHiComNet 2011, Berlin: Springer-Verlag, 2011, 2.
[6] Zhang Y P, Bo L N, Ma Q. A Secure Data Exchange Protocol for the Internet of Things [C]. iCETS 2012, Berlin: Springer-Verlag, 2012, 224-231.
[7] Schrammel J,?Hochleitner C,?Tscheligi M. Privacy, Trust and Interaction in the Internet of Things [C]. AmI 2011 Workshops, Berlin: Springer-Verlag, 2012, 264-266.
[8] Gudymenko I,?Borcea-Pfitzmann K, Tietze K. Privacy, Privacy Implications of the Internet of Things [C]. AmI 2011 Workshops, Berlin: Springer-Verlag, 2012, 280-286.
[9] 吴功宜.智慧的物联网[M].北京:机械工业出版社,2010.
[10] 朱洪波,杨龙祥,于全.物联网的技术思想与应用策略研究[J].通信学报,2010,31(11):2-9.
[11] 刘强,崔莉,陈海明.物联网关键技术与应用[J].计算机科学,2010,37(6):1-4.
[12] 杨庚,许建,陈伟,等.物联网安全特征与关键技术[J].南京邮电大学学报,2010,30(4):20-29.
[13] 刘件,侯毅.物联网时代的信息安全防护研究[J].微计算机应用,2011,32(1):15-19.
中图分类号:TP393 文献标识码:A 文章编号:1009-3044(2016)30-0022-02
展望未来的互联网安全,至少有五个关键的发展趋势。这些趋势是可以预见的,事实上除此之外还会有更多的趋势出现。这些趋势只是我们预见未来的起点。硬件已经足够便宜,使得建造强大的数据中心变得更加容易。借助这种强大的计算和存储能力,新的用途将会出现,全世界的用户也会越来越能够感受到网络空间在影响着他们的生活。
第一个发展趋势是云计算的兴起。在云计算环境下计算资源处于个人和组织的控制之外,本质上,云计算提供的是一种在线付费的服务。在某些方面,这种发展趋势与互联网的诞生相呼应。云计算可以通过网络为许多用户提供近乎无限的计算资源,使其他用户也可以分享网络资源。用户无需自己购买并运行Web服务器及数据存储设备,用户可以租用云服务提供商相应的服务,从而能够节省40%~80%的费用。世界各国的军队也对云计算产生了兴趣。
除了节约成本和规模,云计算也对互联网未来的体系结构产生重要影响。单台的计算机已变得不那么重要,对企业来说数据的访问和控制扮演着越来越重要的角色。云计算也需要解决一些安全问题,尤其是因为个人用户甚至IT安全人员可能都不如在亚马逊或谷歌这样的大公司专门从事云计算的安全工程师。正如银行必须要区分合法和欺诈一样,云服务提供者也必须学会发现非法的行为。
云计算带来了一些新的安全问题,风险更加集中,且具有不确定性。随着数据在云服务提供者和用户之间流动,究竟谁需要对各方面的安全负责?国家边界变得更加重要,也更具有挑战性。布鲁金斯的一份报告指出“根据不同国家的法律,公共安全机构对云服务的执法可能被视为侵犯了数据拥有者的权利”。每个国家是要建立自己的法律对云服务进行监管还是通过建立联合执法以提高监管效率,都是值得我们深思的问题。
第二个发展趋势是大数据。随着数据集变得越来越庞大和复杂,需要用新的工具和方法对数据进行分析。这些工具能够支持我们从搜集的数据分析出有价值的信息。例如,有些提供电影和电视租借服务的公司,互联网网络媒体的兴起使得这些公司转变为提供在线数字交流媒体服务。随着在线电影和电视节目,也搜集到了大量个人用户的偏好信息,通过对这些信息的分析,能够为用户提供更有针对性的服务。
大数据的范围巨大,越来越多的决策需要通过大数据的关联分析,但是大数据也带来了新的安全问题。例如,研究人员对用户观影偏好的研究甚至可以获取用户的真实身份,更多的数据及更好的工具能分析出更多的信息,但是这也将打破人类社会的法律和道德底线。
大数据技术的产生与发展,带来了发展机遇,也带来了网络安全隐患。在当今信息爆炸的大数据时代,必须要对网络安全隐患加以防范,从数据存储、应用和管理三方面制定不同的防范措施,保障网络安全,充分发挥大数据的优势。
第三个发展趋势是移动通信。随着移动终端变得越来越小巧廉价,个人用户将越来越多地从桌面计算机转向移动终端,而且这种转变还没有停止的迹象。2013年的一项研究发现,整整四分之一的专利涉及移动技术领域。
我们在使用手机和平板电脑的时候,安全风险也随之而来。从2013年开始,针对移动设备的恶意软件已超过35万种,而几年前这个数字还是0。这种增长是自然的,但是真正的危险在于我们的安全意识却没有提高。移动设备的界面较小很难为用户提示安全信息,而且它的计算能力较弱也很难为用户提供防护。与桌面计算机不一样,移动设备在家和办公室之间移动,因此安全边界难以确定。用户对自身设备的安全管理较少,更多的是依赖于供应商提供的安全服务。然而,供应商的市场比较分散,从手机操作系统到移动应用程序,每个部分都与安全息息相关,但是每个部分的供应商都无法对手机的安全负责。
无线网络动态变化的拓扑结构使得安全方案的实施难度更大。有线网络具有固定的拓扑结构,安全技术和方案容易部署;而在无线网络环境中,动态的、变化的拓扑结构缺乏集中管理机制,使得安全技术(如密钥管理、信任管理等)更加复杂(可能是无中心控制节点、自治的)。例如,WSN 中的密钥管理问题,MANET 中的信任管理问题。另一方面,无线网络环境中做出的许多决策是分散的,许多网络算法(如路由算法、定位算法等)必须依赖大量节点的共同参与和协作来完成。
最后还有一个更普遍的安全问题,即移动平台的监管问题,哪些政府机构负责监督,哪些市场主体负责打击移动互联网的威胁,与传统互联网一樱所有这些问题都必须解决。
第四个发展趋势是不断扩张的互联网上的人口。当互联网兴起时,只有一些美国的科研人员互相联网,如今,美国只占有网络空间的一小部分。根据联合国预测,到2015年互联网中文用户数量将超过英文用户,非洲拥有移动智能手机的用户数将超过美国和欧洲的总和。
这种转变将对网络空间产生重要影响。例如,原来网络上流行的一只很可爱的小猫的视频热度将会消退,因为谷歌的研究人员已经发现网络上一些可爱的山羊和熊猫的视频在南非和中国广泛传播。比网络热点的转移更重要的是语言的转变。互联网最初的几十年,所有的浏览器都需要使用拉丁字母才能够访问网站,现在这个限制已经被打破了,你可以通过输入埃及文字组成的网址访问埃及网站。
互联网已经越来越多地反映出政府和网民们的价值观。互联网最初由几个美国计算机科学家发明,互联网现在的体系和规范也从那时发展而来。互联网最初被赋予的世界观是互联互通、共享及开放。然而互联网的发展却越来越背离这种世界观。国际电信联盟ITU已经开始而且还会一直讨论网络安全和网络自由之间的关系,开放的危险是使互联网变得越来越分化。正如经济学家指出,越来越多的国家用防火墙将网络隔离开,并把本国内的网络视为互联网。
互联网的发展已经预示了这种风险。现在的网民和20世纪60年代加州伯克利的那些互联网的发明者在政治和文化差异较大,但是这些发明者创造了网络,而新生代网民又加入了网络。一旦这些新加入的用户进入网络,他们的世界观也会被网络所影响。网络空间反映了用户的特点和需求,用户也能够对网络空间的特点和需求产生影响。
第五个发展趋势是物联网。广泛地说,物联网的概念是将一切连接到网络设备上以搜集和使用数据。我们生活中的很多实物从相机到汽车都已经内置了电脑芯片,它们都能互联互通。然后从手环到浴室再到商店都内置了电脑芯片,而且也可以互联互通。在这种场景下,分布式传感器能够探测街道交通,并通过GPS将你导航回家,同时将你与家的距离通知家里的温度控制设置以使它随时连接智能电网保持室内温度。传感器还能探测不同餐厅的拥挤程度并帮助你预约,健身房里的健身车能够根据你的信用卡发现你在餐厅的订单,并决定你还要锻炼多久才能消耗掉第二天预订的那颗芝士蛋糕所产生的热量。
互联网由于标准开放,任何人都能参与建立,因此发展迅速。但是连接到物联网上的设备仍然缺乏输入输出、共享及自动化的指令解释、数据处理的标准。统一的数据格式是数据搜集和解释的前提,也是一项很昂贵的提议。打开Ruby的风扇只需一个监测温度的行为,但并不是所有都这么简单。更多的决策需要复杂的技术协议,需要软件对我们的需求进行分析并反过来为我们提供决策和建议。
物联网另一个主要的挑战是其将前所未有地深度渗透到我们的生活中。如果我们一切都要基于计算机数据进行决策,那么我们需要努力确保数据不会被损坏。正如我们现在所看到的已经有黑客从攻击智能汽车到攻击具有联网功能的马桶。
既然我们已经预见网络空间未来的发展趋势,当网络真正铺天盖地而来的时候,一定还会产生更多的发展趋势。现在和将来对网络空间的不可预知程度导致我们对未来的网络空间产生了恐惧。但我们要坚信,无论未来的发展如何,我们只需建立正确的认识,并制定审慎的应对策略,就一定会朝着美好的方向发展。
第四届中国国际物联网大会暨展览会将于6月4-5日在上海国际展览中心举行。展览规模将达到12000平方米,展品范围涵盖智能交通、车联网、智能建筑与家居、移动支付、食品检疫、供应链管理系统、储藏技术与设备、物品溯源技术、RFID技术、芯片、智能卡、计算机互联网解决方案、数据管理、投融资机构等。本届展览会以“民生物联网、智慧新生活”为主题,同期还将举办主题大会、专题研讨、交流洽谈、产品展示等相关活动。
6.4-6.6
2013年中国国际智能卡、RFID与物联网展览会
作为中国乃至亚太地区最具影响力、规模最大、参展企业最多的国际智能卡、RFID与物联网的行业盛会,2013年的博览会内容将涵盖物联网产业链的众多方面。博览会期间将举办由国家金卡工程协调领导小组办公室、中国信息产业商会、中国贸促会电子信息行业分会主办的“2013年中国国际智能卡、RFID与物联网展览会”、“第十一届中国(北京)RFID与物联网国际峰会”以及十多个专业论坛。预计博览会将吸引来自中国()、英国、德国、日本、韩国、新加坡等国家数百家相关企业参展,对推动以物联网为核心的新兴科技产业与应用的发展起到积极的促进作用。
6.9-6.12
2013广州国际建筑电气技术展览会
配合中国智能建筑市场高速增长及承接上届的成功,第十届广州国际建筑电气技术展览会将于2013年6月9-12日在广州中国进出口商品交易会展馆隆重举行。
该展会已被公认为亚洲建筑电工电气和楼宇自动化及智能家居市场的主要平台,今年展会将继续与广州国际照明展览会和广州国际光电建筑展览会同期举行。
本届展会将继续举办多项研讨会及论坛活动,探讨中国智能建筑及家居自动化市场发展趋势、智能建筑应用及最新技术发展、智能建筑控制系统标准、物联网技术及智能家居发展、建筑电气设计及其设计应用等多个热门领域。
6.17-6.19
2013中国国际食品安全与创新技术展览会
本届展会将在2013年全国食品安全宣传周期间举办,将全面展示我国乃至全球食品安全技术创新和发展成果,进一步提高企业的食品安全控制意识和自检自控能力。
展会将对食品安全控制技术、食品安全可追溯检测技术、食品安全可追溯设备、食品安全应用可追溯技术的最新成果以及国内知名食品企业在食品安全方面成就等进行展示。
6.18-6.20
2013第八届中国国际RFID、物联网技术与云计算展览会
由广东省现代信息服务行业协会、国际自动识别制造商协会、中国RFID产业联盟、香港EPC/RFID供应链创科中心、香港物流及供应链管理应用技术研发中心、广东防伪行业协会、中国传感器协会、中国物流与采购联合会、广东省自动化学会、广东连锁经营协会联合主办的第八届中国(广州)国际RFID、物联网暨云计算展览会将于6月在广州举办。
展会面积预计超过约1万平方米,将吸引来自国内及港、澳、台地区、及英国、法国、日本、加拿大、芬兰、德国、意大利、韩国、瑞典、阿联酋、美国等行业多个国家和地区的知名机构和企业参展。
6.18-6.20
2013第十三届中国(广州)国际自动识别展览会
2013第十三届中国(广州)国际自动识别展览会充分考虑到物联网行业当前需求和行业发展特征,以RFID(无线射频识别)、传感网、自动识别技术和应用为主体展示内容,包含产业链上下游产品、技术、设备及各领域的成功案例展示,充分体现了自动识别、RFID、无线传感等技术、应用、商务以及整个行业的特色和当前需求。
同期还将举办2013中国(广州)国际RFID与物联网技术应用展会、2013中国(广州)国际零售业展览会、2013世界物联网产业技术发展暨投资峰会论坛等精彩活动。
6.18-6.21
2013海峡智慧城市与物联网产业博览会
第十一届中国・海峡项目成果交易会“2013第二届海峡物联网产业博览会暨海峡电子信息产业博览会”将于2013年6月在福州海峡国际会展中心举办。
展会以现场展示新技术新产品和高峰论坛及项目对接为主,将邀请相关部门领导、行业专家、企业精英围绕以上主题现场探讨,让物联网企业对自身企业的发展有清晰的定位与认识,让行业主管部门对于如何引导和促进物联网企业发展有了更多的思路和方法。
1、引言
电梯是关系到社会民生及企业安全生产的关键特种设备,其安全性能也是全社会较为关注的焦点之一。传统的电梯远程监控系统采集的信号有限,传输速度慢,信号实时性较差且资费严重。随着现代传感技术及网络技术的飞速发展,物联网技术得到了较为广泛的应用[1],先进的信号采集模式可以采集较为详细电梯信息数据,优秀的网络平台保证了信号的实时可靠传输。
2、系统结构设计
电梯安全物联网智能控制系统依托传感网、GPRS网络将相关特种设备通过相关信息传输至中心。各级政府工作人员、检验机构工作人员可以通过GPRS、光纤、以太网络进行数据的访问。企业及公众可以通过互联网进行信息的查询,具体网络拓扑如下所示:
电梯安全物联网智能控制系统由多个模块实体组成,各模块根据功能分布在体系的不同层次中,下层为上层或同层的软件实体提供服务支撑,上层构件可以调用下层各个软件实体提供的功能。服务支撑或功能调用均通过接口提供。数据传输采用基于M2M、TCP/IP的网络通信协议,接口设计遵循规范化、一体化、简单化、可扩展、可持续发展的原则。
3、电梯信息的实时采集
系统的设计框图如下所示:
当电梯设备正常运行时,系统主要采集电梯当前的运行状态、运行楼层、运行方向、门状态、供电情况、温湿度、灯光、承载情况、门厅呼叫情况以及视频图像等信息,通过GPRS网络实时传输至动态监管平台。
当电梯设备发生故障,在检测到电梯运行异常、重大故障事故或困人事故后,故障报警功能会主动启动声、光、图像、文字、短信等多种形式向使用单位、管理部门、检验机构、维保单位等不同层次进行报警,实时产生紧急处理警示和应急预案。故障处理结束后,由平台生成报警记录,对故障原因、故障排除时间、故障排除后的电梯状态形成故障处理记录。
数据链路模块为数据传输层提供前段软、硬件支持,将已经采集好的电梯信息按照协议格式进行打包处理,并采用文件加密系统进行信息API]加密,以保障电梯信息安全。信息通过数据链路层对服务器的数据中心进行数据实时传送,并接收数据中心所传输至终端的广播信息,及时对终端电梯做出相应处理。
4、数据传输系统设计
电梯安全物联网智能控制系统采用虚拟专用网络技术对信息进行传输,VPN指的是依靠ISP和其它NSP,在公用网络中建立专用的数据通信网络的技术。虚拟专用网不是真的专用网络,但却能够实现专用网络的功能。在虚拟专用网中,任意两个节点之间的连接并没有传统专网所需的端到端的物理链路,而是利用某种公众网的资源动态组成的,当启用远程访问时,远程客户可以通过远程访问技术像直接连接到本地网络一样来使用电梯安全物联网智能控制系统本地网络中的资源。
5、基于云计算的电梯分析系统设计
5.1 云计算模式设计
云计算是一种新型的网络应用模式。该应用的独特性在于它是完全建立在可自我维护和管理的虚拟资源层上的。使用者可以按不同需求动态改变需要访问的资源和服务的种类和数量。这种服务可以是IT和软件、互联网相关的,也可以是任意其他的服务,它具有超大规模、虚拟化、可靠安全等独特功效。电梯安全物联网智能控制系统采用云计算应用模式,可以实现资源共享的最大化,显著提高了资源的利用率。分布式存储技术利用了云环境中多台服务器的存储资源来满足单台服务器所不能满足的存储需求,其特征是存储资源能够被抽象表示和统一的管理,并能能够保证数据读写及其相关操作的安全性、可靠性等各方面要求。分布式云计算技术使电梯的信息分析可以分成很多细粒度的子任务,这些子任务分布在多个有利计算节点上进行调度和计算,从而在整个电梯信息分析系统中获得对海量数据的处理能力。
5.2 电梯数据分析
基于物联网络技术的传感终端采集电梯设备各类基本参数、生产进度、安装进度、检验记录、运行状态、维保状况、事故记录、单位信息、作业人员信息和监察记录等,形成特种设备基本数据库。系统对采集的数据进行分析判断,按照分类监管原则,对照安全技术规范的要求,对采集信息所隐含的风险进行准确识别。系统基于识别的风险进行分析评价,采用定量或定性的方法对判断分析电梯风险发生的频率及概率、分析风险可能产生的影响并确定风险的重要性水平。根据数据分析结果对电梯设备事故及时做出应急反应和妥善处置,科学实施特种设备事故调查处理,提高风险控制和事故预防的能力与水平。
6、总结
电梯安全物联网智能控制系统是基于传感终端、GPRS传输、射频RFID等先进技术,实现设备本体的传感信息采集、身份识别认证,通过建立高效的数据传输渠道,实现各级的安全信息联网、信息共享,通过基础数据即时更新,动态掌握设备变化情况,建立科学的预警系统,设立电梯设备故障自动报警、事故预警提示等,改进安全监管水平;同时通过对数据的宏观分析,为实现电梯安全的物联网智能控制。本文在介绍系统总体设计的基础上,分别阐述了电梯信息采集模块、数据链路模块及电梯分析系统的设计。基于以上设计,选取了50台电梯进行电梯安全物联网智能控制系统的试运行,运行结果表明,该系统能够应用到多种型号的电梯系统,有效的对电梯设备进行实施的安全控制。
参考文献:
[1] Blocher A. Internet of things:talking with everyday objects[J].