当前位置: 首页 精选范文 水利水电工程电缆设计规范

水利水电工程电缆设计规范范文

发布时间:2023-10-10 15:35:51

导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的5篇水利水电工程电缆设计规范范例,将为您的写作提供有力的支持和灵感!

水利水电工程电缆设计规范

篇1

[作者简介] 杜小东,广西南宁水利电力设计院工程师,研究方向:水利水电工程水机及辅机系统设计,广西 南宁,530001

[中图分类号] TU352.5 [文献标识码] A [文章编号] 1007-7723(2013)03-0028-0003

一、工程概况

越南松泵6水利枢纽工程是一个以发电为主的工程,坝址位于越南广南省,距岘港约80Km。松泵6水电站为河床式水电站,采用贯流式机组厂房,共安装两台14.5MW灯泡贯流式水轮发电机组。机组安装高程为9.30m,机组间距10.40m。厂房总长度43.0m(其中主厂房段长度25.40m,安装间段长度为14.50m);主厂房总宽度26.10m(其中主厂房段长度14.60,副厂房宽11.50m);厂房总高度42.60m。发电厂房沿水流方向从上游到下游依次布置进水建筑物、主厂房、副厂房、尾水建筑物组成,安装间位于厂房右侧。

二、工程消防原则及总体设计

为贯彻“预防为主,防消结合”和确保重点、兼顾一般、便于管理的方针,并结合电站的具体情况,我们确定了如下基本设计原则:

在消防区内,按规范要求统一设置安全出口及其标志;设置消防控制中心和火灾报警系统,消防电源采用可靠独立的双电源;采用水灭火、CO2灭火和干粉灭火器三种灭火方式,消防用水取自可靠而充足的水源。

本枢纽工程的防火设计按能源部、公安部、水利部联合颁发的《水利水电工程设计防火规范》(SDJ218-90)及有关规定执行。

厂区各主要建筑物、构筑物耐火等级不低于《规范》要求,建筑物设安全出口,厂区内应设置消防通道。消防车能通畅到达主变压器场、开关站、露天油罐等主要建筑物。厂区内各建筑物及屋外电气设备之间沿道路旁设置SS100室外消火栓,消火栓间距为80 m。建筑物内配置室内消火栓、灭火器材,布置安全通道和明显疏散指示标志。

三、建筑物消防设施

(一)厂房建筑物消防设施

1. 防火分区

(1)根据《水利水电工程设计防火规范》SDJ 278-90的规定,水电厂主厂房发电机层以上定义为单层厂房,火灾危险性类别为丁类,耐火等级为二级,按《建筑设计防火规范》GBJ16-87要求,可不作防火分区。

(2)根据《水利水电工程设计防火规范》SDJ 278-90的规定,水电厂主厂房发电机层以下定义为多层厂房,火灾危险性类别为丁类,耐火等级为二级,按《建筑设计防火规范》GBJ 16-87要求,可不作防火分区。

(3)水电站主、副厂房内的变压器室、配电装置室和透平油油库等与其他生产场所之间以防火墙及防火门作局部分隔。

2. 厂房安全疏散设施

(1)安全出口

副厂房下游侧两端设置楼梯通道,可从厂房底部的流道层直通屋外地面。在主厂房的上游侧靠近安装场也设置一楼梯,可以从流道层直通到安装场。

(2)疏散走道

主、副厂房疏散走道为2.0m;楼梯的宽度1.1m;门净宽2.0m,并应向疏散方向开启,符合《水利水电工程设计防火规范》(SDJ 278-90)的第4.2.8条规范要求。

(二)主、副厂房建筑物防火设计

1. 建筑物、构筑物构件的燃烧性能和耐火极限符合规范的要求。

2. 钢屋顶施加钢结构防火涂料提高其耐火极限,厂房内部装修应采用防火材料。

3. 厂房灭火设施

(1)建筑灭火器配置

根据《建筑灭火器配置设计规范》(GBJ 140-90)设置消防控制中心和火灾报警系统,消防电源采用可靠独立的双电源;采用水灭火、CO2灭火和干粉灭火器三种灭火方式。

(2)消火栓配置

1)屋内消火栓配置

主、副厂房发电机层及其他各层消火栓布置

运行层(23.80 m)以下消火栓的布置,根据规范要求其间距不宜大于30m,并保证该层均设有消火栓,消防水量和水压各部位均有2股水柱同时到达。现运行层以下各层设3套SN65室内消火栓,在下游侧每台机组段旁设置一个消火栓,包含QZ16、25m长水带。根据火灾危险性类别、建筑面积和消火栓布置情况,主厂房运行层以下各层配置6~8个手提式MF3灭火器,桥式起重机应配置二个手提式CO2灭火器。

运行层(23.80 m)以上的主、副厂房每层设4套SN65室内消火栓,包含QZ16、25m长水带,每层配置6个手提式MF4灭火器。并在安装间配一个推车式干粉灭火器。

2)屋外消火栓配置

消火栓沿厂区道路设置,其间距按消火栓保护半径确定,在主厂房周围不应大于80 m。升压站内出入口处配备一个砂箱和和相应数量的手提式灭火器, 在断路器、电压互感器、电流互感器附近,配备手提式灭火器。

四、机电设备消防设计

(一)屋外电气设备消防设计

1. 主变压器消防

电站设两台油浸式主变压器,布置在厂房右岸高程38.0m变电站内。根据《水利水电工程设计防火规范》SDJ 278-90规范规定,单台容量在90MVA及以上的油浸式变压器应设固定式水喷雾等灭火系统。本电站的主变单台容量为16MVA,所以不设固定式水喷雾等灭火系统,但为了消防安全可靠,在开关站周围布置相应数量的室外消火栓,并在开关站的出入口附近,配备砂箱和手提式灭火器等灭火器材。开关站设室外消防栓两个,主变压器还设有贮油坑和事故油池,储油坑上层辅以约150mm厚的卵石,可防止变压器油蔓延和污染。

2. 其他电气设备消防

在断路器、电压互感器、电流互感器附近,配备相应数量的手提式灭火器。

(二)屋内电气设备消防设计

1. 水轮发电机消防

本电站采用灯泡式水轮发电机组,水轮发电机安装在密闭的灯泡体内,其消防采用固定式水喷雾灭火方式,喷头处水压按0.4Mpa计,流量满足主机厂家的要求,其火灾的控制由布置在灯泡头的感烟器以及感温器控制,当2种探测器同时动作时,报警控制器自动报警,由控制器给出指令并自动或手动启动灭火装置。感烟器、感温器以及控制单元等全套设备由主机生产厂家配套提供,信号引入厂房消防报警系统。

2. 其他电气设备消防

本电站厂房内如高压开关柜室、柴油发电机室等电气设备房间的门为向外开启的乙级防火门,并直通屋外或走廊。并配手提式灭火器。

(三)透平油系统消防设计

透平油库布置在副厂房高程19.30 m层,设有两个向外开启的防火门。防火门耐火等级为1级,耐火极限为2h,配套手提式泡沫灭火器4个,并在油库出口处设消火栓1个。油库设有挡油槛,能贮存油罐中所有的油量。

(四)其他防火措施

各房间装饰材料采用非燃或难燃材料,重要电气设备房间均采用防火门。电缆采用阻燃电缆。

五、消防电气

(一)消防电源及配电系统

1. 消防电源

消防用电设备的电源按二级负荷供电,从厂用电源采用独立双回路供电,以保证发生火灾时消防用电设备仍能正常运行。

2. 消防配电

两台消防水泵从400V厂用电系统分别采用单独电源。其余的消防用电设备均采用单独的供电回路。

(二)火灾事故照明和安全疏散指示标志

为了保证发生火灾时运行人员能安全疏散,本电站厂房内设有两个安全出口楼梯,厂房内最远工作地点至最近楼梯出口距离均不超过30m,主要楼梯口,疏散通道、中央控制室、主机间等均设置事故照明和疏散指示标志,疏散指示标志和事故照明灯正常时由厂用电源供给,当厂用电发生故障时,事故照明切换箱可自动切换至直流电源,供给事故照明。

(三)火灾自动报警装置

电站的火灾自动报警系统主要为两个分区,副厂房上面四层为一个防火分区,下面三层为一个防火分区;每个分区设置一套区域报警控制器,由火灾报警控制器、光电感烟探测器、点型感温火灾探测器、声光报警装置、按钮,配套电缆等设备组成。

六、消防给水

(一)消防水源和消防给水方式

消防水源取自下游尾水渠,经消防泵加压后送至全厂消防供水主环管,以保证足够的消防水压。采用两台消防水泵,消防水泵房布置在14.80m的水泵房内,水泵直接从下游取水,设置2个取水口,高程为15.60m,比下游最低水位17.53m低1.93m,这样水泵随时处于充水状态,以快速启动。为防止下游杂物进入消防泵造成管路堵塞,在每台消防泵进口前设置一手动滤水器。为了在启动之前有可靠的消防用水,在高位水池引水管用逆止阀与消防水管相联,高位水池容积63m3能提供10min的备用水源,以便能快速起动消防水泵。

(二)消防给水设施

1. 消防给水量

全厂消防主要给水对象、给水量和给水压力统计表。

2. 消防给水设施选择

本电站采用两台消防水泵供水,型号为XBD5.4/60-150,Q=216m3/h,H=54m, N=55kW ,1台工作,1台备用,并保证在火警后5min内开始工作。消防水泵应采用双电源或双回路供电。

七、结 语

篇2

1 设计中的几个重大技术问题

1.1 枢纽布置

枢纽布置是整个枢纽设计的关键技术问题之一。

在初步设计批准后,我院在清华大学及本院科研所进行了6个水工模型、5个方案的试验研究,验证了初步设计所推荐的枢纽布置是最优方案,即右岸坝后式水电站的枢纽布置具有布置紧凑、管理运行方便、施工简单、投资省、上下游流态可基本满足运行要求。该方案又经长期的、大量的整体及断面水工模型试验研究后,进一步完善了枢纽布置:

主坝泄洪建筑物由表孔和底孔组成,最大泄洪流量为56200m3/ s,表孔共18孔,孔宽15m,挑流消能。4个泄洪底孔为深式一短管、明流槽以及挑流消能。由于施工的需要,将底孔由电站左侧迁移至表孔中部,表孔则分两段布置即右7孔、左11孔,两段中间布置泄洪底孔。

溢流坝闸墩由流线型改为平尾墩、左3孔又改为宽尾墩、通过试验将挑流鼻坎高程抬高了3m,增加挑射角至30°等措施,达到了充分消能的目的,改善了左岸回流淘刷坝趾和下游冲刷。溢洪道右端导墙加设了导向墩,电站左导墙加长80m,加长部分左折20°。这些措施避免了对厂房的冲击,改善对尾水渠左导墙的冲刷,并大大减少了尾水渠出口淤积,为电站运行提供可靠的保证。

潘家口电站是一座混合式抽水蓄能电站,装机4台,其中1台150MW常规机组、3台90MW抽水蓄能机组。这座电站是我国目前最大的混合式抽水蓄能电站,其特点:一是电站水头变幅巨大;二是常机组布置在同一个厂房内;三是蓄能机组需要安装在一期工程形成在厂房内;四是设备多、且某些设备还有特殊的要求。这些特点和要求,给机组制造与厂房布置带来复杂性。经过周密的布置和详细研究,并与厂家协商,对机组的结构做了修正和调整,才满了运行和设计要求。

保坝措施经技术经济比较,选择了加高大坝2.5m,枢纽泄流能力提高15%,最大泄量为56200m3/s。而枢纽增加投资仅占总投资的2%。因此该方案是经济合理的、也是可靠的。

1.2 关于水库诱发地震的研究

潘家口坝址与库区有东西向、北东向及弧形构造会入,构造复杂,又有历史地震的记录。根据联合国教科文组织的规定,我院开展了关于水库诱发地震的研究,通过扩大的地质测绘、遥感、精密水准测量、地应力测试、地震台网的监测,10余年来还未观测到水库诱发地震的迹象。但根据国内外工程经验,今后还应加强监测工作。

1.3 关于碱活性骨料的研究

本料场的混凝土天然骨料,通过调查发现有燧石、凝灰岩、流纹岩、粗石岩、蛋白石、安山岩等活性骨料,约占总量的30%,诵过岩相鉴定及化学法试验确定,属有害的碱活性反应的材料。为此,又进行了长度法试验。试验结果证明砂、骨料均不产生过量的膨胀,可评价为非活性骨料。由于缺乏骨料在混凝土中使用的经验,为安全可靠,设计仍用抚顺低碱大坝水泥及掺粉煤灰等抑制措施。经近20年的运行均未见异常。

1.4 下池库内往返水流

混合式抽水蓄能电站下池布置在滦河干流上,因此需满足泄洪要求,即建筑物应能抗御大洪水冲淤的作用。下池工程为三级建筑物,要求抵御28000m3/s的大洪水冲击以及淤积造成的不利影响。为此电站左导墙按折线布置,挖除左岸滩地约100万m3砂石,大大改善了尾水渠出口淤积问题。经包括上下池整体水工模型试验,证明大洪水过后,下池有效库容损失约10%左右,而实际设计已留有足够的余地,因此运行是可靠的,设计也是成功的。

1.5 水资源开发与经济效益。

由于京津唐地区缺水严重,因此水资源开发与利用成为当时的一个核心问题,引起各方面的关注。在审查潘家口初设时,华北电管局明确提出在原供水、防洪及季节性电站的基础上,在可能条件下,增设3×90MW抽水蓄能机组扩大装机容量,使季节性电站变为混合式抽水蓄能电站。其优点:(1)结合供水发电,发电不降低供水的效益;(2)可避免在枯水时段或不需要供水时出力受阻甚至停机;(3)常蓄机组互补,可增加尖峰发电量,减少输入电量,提高机组的综合效率;(4)由于增设抽水蓄能机组,大大改善了电站在系统中的地位和作用。提高对系统的调节能力,具有明显的调频效应,为系统提供了一个可靠的调峰电源。量增加了3.87倍,总峰荷电量达4.838亿kW·h.峰荷电量大幅度增长的原因:抽水发电2.307亿kW·h,另外在系统中填谷210~270MW,解放了火电机组调峰500MW。这种混合式水电资源开发的经济效益是十分明显的。  2 设计中采用的新技术

2.1 坝型

主坝采用了低宽缝重力坝,这种坝型是由宽缝重力坝发展而来的。为了区别,可视一般宽缝重力坝为高宽缝重力坝。高宽缝为坝高的1/2。低宽缝重力坝缝腔高为坝高的1/3。其次是缝腔的体形不同,低宽缝尽量避免倒模板,将上下游缝腔的坡度改为竖直坡。这种坝型的优点是:(1)较实体重力坝节省工程量10%;(2)保留了高宽缝重力坝的优点如降低扬压力,便于检修、坝体冷却,便于基础排水和排水设施的布置,便于使用预制模板等;(3)封腔早,便于机械施工、提高工效、加快进度。

2.2 宽尾墩式溢流坝

宽尾墩式溢流坝是由一般带挑流鼻坎消能工的溢流坝发展而来的。即由一般溢流坝加宽尾墩形成宽尾墩式溢流坝。这是我院科技人员在国内外首创的一种消能工。在闸室内宽尾墩强迫水流收缩成水冠,过闸室后水冠扩散,在反弧段内,宽尾墩两侧高速水流相撞,充分掺气,形成高低坎消能效果,增大入水角和扩散面,减弱冲刷能力,达到充分消能的目的,采用宽尾墩后当泄5000年一遇洪水时,坝下冲刷变淤积,消能效果明显,保证了大坝泄洪时安全运行。

2.3 裸露式具有抗冻性的碾压混凝土重力坝

下池左岸挡水坝段经过技术经济比较,以碾压混凝土重力坝代替了常态混凝土重力坝,取消了常态混凝土保护层。碾压混凝土直接接触空气和水,并且要与常态混凝土坝一样,要经受一切大自然如阳光、温度、水的作用等。由于下池处于寒冷区,水位日变幅5.5m,因此要求坝体水位变动区应达到150次冻融循环,其它部位也应达到50次抗冻要求。设计采取了以下措施:(1)总胶凝材料用量177~145kg/m3,水泥用量122~94kg/m3。(2)混凝土内掺用复合外加剂,使碾压混凝土含气量达到4~6%。(3)施工过程中在上下游坝面喷洒胶凝剂,加强了层间结合,使坝体达到一定的抗渗性。

另外简化了断面,取消了廊道、上游直坡、下游阶梯状斜坡等,以适应碾压要求。

这座裸露式具有抗冻性碾压混凝土重力坝,最大坝高24.5m,坝顶长275m,横缝间距57m。该坝已建成5年,运行正常,是国内外首例,对碾压混凝土筑坝技术的发展具有一定的开创性。

2.4 机组变速运行

为了适应水头变幅巨大的运行要求,在引进蓄能机组的过程中,经与厂家研究,采用变极双速机组,起动变频器扩大容量为60MW,串连在机组与主变之间,即可实现水泵起动和变速运行,这种定子接线60MW变速运行机组在国内外是首例。60MW变频器能保证蓄能机组在发电工况(36~53m),水泵工况(36~79m)内以最佳转速在高效区运行。机组效率提高:发电工况12%,水泵工况19.2%。机组综合效率由60%提高到80%,替代容量增加15%,气蚀振动大人减轻,提高了机组的寿命。

2.5 碾压混凝土路面

潘家口水利枢纽对外交通7.2km,其中5.9km路段采用碾压混凝土筑路技术。经过试验研究,将干砂浆(无坍落度砂浆)应用于碾压混凝土路面,保证了路面平整不露石子,提高了路面力学强度和耐磨性,成为国内外首创筑路新工艺。全碾压式一级配混凝土、表面铺干砂浆厚5~10mm,一次碾压成高级路面。

2.6 水电站主厂房防火的改进措施

电站防火设计经过唐山市消防支队的审查,设计符合国家、部颁设计规范的要求,并有所创新,国内外首次采用的改进措施:

(1)常开门式封闭楼梯。(2)挡烟垂壁,在机组段之间横梁(梁高0.6m)下设轻钢龙骨,外侧固定石膏板,挡烟垂高0.9m,总壁高1.5m,保护电缆效果明显;(3)自动报警与手动报警相结合;(4)电缆夹层采用固定式卤代烷灭火系统。以上四项措施对厂房结构改动很小、投资少、易实施、效果明显,提高了防火安全性和可靠性。

3 提高效益的设想

3.1 为了进一步发挥混合式抽水蓄能电站的效益,建议再引进两台60MW变频器。

3.2 抬高运行水位

由于在大坝设计中已适当留有余地,可考虑抬高水位运行,每抬高1m,即可增加5000万m3的有效库容。这一措施,效益很高,可在适当时机在不影响大坝安全运行的前提下,予以实施。

3.3 在引滦供水系统中,除潘家口之外,还有大黑汀、于桥、邱庄、陡河水库等,已形成一个关系密切的供水网络,建议在不增加投资的条件下,加强调度与管理,即可达到多蓄水,提高供水效益的目的。如潘家口与大黑汀水库联合运用可多调节水量1.2亿m3,如五库联合运用,其效益更为可观。

3.4 进一步发挥水库排沙对下游入海口冲刷的作用

潘家口水库有4个底孔,这4个底孔泄量尚不能满足现行规范的要求,应该充分发挥现有底孔排沙作用。经过科学计算和研究后在汛期低水位时,在有准备的条件下,泄水拉沙,隔几年进行一次以提高水库寿命。这一措施带来的另一个好处是:利用人造洪峰对入海口进行冲刷,防止海口淤积。

参考文献

1 潘家口混合式抽水蓄能电站、曹楚生.1990年4月国际抽水蓄能会议论集。

2 一期工程概述.曾楚生.李成乾,水利水电工程.1986年2期

篇3

中图分类号:TU998文献标识码: A 文章编号:

一、水电站厂房火灾危险性

水电站由于设备众多、线路复杂、带油设备繁多,发电机、主变压器、油浸变压器(电抗器)、油开关、电缆、蓄电池等电力、电气设备,柴油发电机、绝缘油和透平油系统等场所火灾危险性大。水电站厂房地下部分空间密闭,一旦发生火灾,宜造成人员疏散困难,火灾扑救难度大,从而产生社会影响,造成巨大经济损失,后果严重。

二、水电站消防设计特点

1重点突出

水电站工艺布置与运行情况不同于其他工业建筑,主厂房空间高大,较长时间的烟气聚集不会影响到人员疏散,而且随着电站管理自动化程度的提高,大部分场所无人值班或少人值守,人员疏散与民用建筑有所不同。因此在消防设计中,保证机电设备安全和人员安全疏散应是水电站厂房消防设计的重点。

2消防措施综合运用

在消防设计中,首先应突出“防”,争取将火灾危险性降到最低程度;其次合理布置各个功能区,有针对性的对火灾危险性高属丙类的场所、部位进行分隔,采取多重消防灭火保障措施。在预防-报警-灭火设施启动多重环节保护下,尽量减少火灾蔓延的可能性发生。

3立足自防自救

“预防为主、防消结合”是消防工作方针。水电站一般远离城镇,可借助的社会消防力量有限,消防安全立足自防自救。在确保消防需要的前提下,充分发挥水消防优势,尽可能与正常使用的设备相结合,重点部位采用先进技术,做到保障安全、使用方便、经济合理。

三、消防设计常见问题分析

西部地区水电站厂房生产的火灾危险性类别通常为丁类。部分场所如中央控制室、油浸变压器室、油处理室、柴油发电机室、室外主变压器场等为丙类。在消防设计中通常根据厂房建筑的火灾危险性类别和危险等级,按照以下防火规范进行设计:

(1)《水利水电工程设计防火规范》SDJ 278-90、

(2)《火力发电厂与变电站设计防火规范》GB 50229-2006、

(3)《建筑设计防火规范》GB 50016-2006、

(4)《建筑内部装修设计防火规范》GB 50222—95(2001年修订版)

(5)《建筑灭火器配置设计规范》GB 50140-2005

(6)《水力发电厂房采暖通风与空气调节设计规程》(DL /T5165-2002)进行相应的消防设计。

(7)《建筑防火封堵应用技术规程》CECS 154:2003

在水电站消防设计审查中通常存在以下几个问题:

1.将主、副厂房作为同样的功能分区,划分为一个防火分区。

丙类场所内部装修设计燃烧性能等级设计不合理。顶棚、墙面材料较多使用燃烧性能等级为B1级的装修材料,地面、隔断使用B2级;丙类场所防火分隔中,建筑装修材料的燃烧性能等级设计遗漏。

厂房内各部位火灾危险性定性不全、划分不准确,导致主变室、油系统、中控室等重要部位消防设计不完整。

安全疏散不能符合新标准要求,两座水电站都仅设置了敞开楼梯间作为安全出口,且地下层与地上层共用楼梯间;作为工作人员主要聚集地的办公室只设有一条疏散线路,且设在主变室上方,无法保障人员安全疏散。

油系统事故排烟系统未独立设置,油罐和油处理室排出的油气火灾危险性大,易发生油气火灾,与厂房通风系统共用通风总管道,一旦发生火灾,势必造成火势向其他通风子系统蔓延扩大。

电站的消防电源均取自厂用电系统两端的母线上,一旦发生火灾, 则两端母线均无法供电,无法满足消防电源的要求。

对不同形式的墙、楼板、井在穿管、开洞时其防火封堵组件设计笼统,交代不清或设计不合理。

四、水电站消防设计建议

1防火分区和丙类场所防火分隔与内部装修

根据《水利水电工程设计防火规范》(SDJ278-90,以下简称《水规》)规定:水电站主厂房和高度在24m以下的副厂房,其防火分区最大允许占地面积不限,是指各自的防火分区面积不限,但并不是表明二者可以划分为一个防火分区。根据《建筑设计防火规范》(GB50016-2006,以下简称《建规》)第 2.0.20条、7.1.5条,在主、副厂房按照不同防火分区划分时,相邻之间应设置防火墙分隔,防火墙上门窗洞口应为甲级防火门、窗。

水电站厂房的丙类场所主要有:中控室、发电机配电装置室、油浸变压器室、油处理室、柴油发电机室、电缆夹层、室外主变压器等场所。根据《水规》第 4.1.1条规定,丙类生产场所应作局部防火分隔,防火分隔宜按照《建规》第 5.4.2.3、5.4.2.5条、第 5.4.3.2条规定,采用耐火极限不低于2.0h不燃烧体隔墙和耐火极限不低于1.50h的楼板及甲级防火门窗与厂房其他部分隔开。

根据《建筑内部装修设计防火规范》GB50222- 95(2001修订版)第4.0.3条规定,电子设备室等丙类场所顶棚和墙面装修材料燃烧性能不应低于 A级,地面和其他部位不应低于 B1级。中控室根据《火力发电厂与变电站设计防火规范》GB 50229-2006第 11.1.5条规定:控制室内装修应采用不燃材料。

2安全疏散出口、疏散距离和楼梯间

安全疏散出口:根据《水规》第2.0.2、4.1.1条规定,水利发电厂的主、副厂房生产的火灾危险性类别为丁类,耐火等级为二级。水电站厂房的安全疏散出口宜根据《建规》第3.7.2.4、3.7.2.5条、《水规》第4.2.4条规定设计, 按照耐火等级为二级的厂房进行设计,厂房的每个防火分区、一个防火分区内的每个楼层,当“建筑面积大于400m2,且同一时间的生产人数超过 30人”或“地下厂房其建筑面积大于 50m2,经常停留人数超过15人”时, 应当设置两个安全出口。根据《水规》第4.2.4条规定,当副厂房每层建筑面积不超过800㎡时,且同时值班人数不超过15人时,可设一个安全疏散出口。

疏散距离:根据《水规》第4.2.5条规定,发电机层室内最远工作地点到该层最近的安全疏散出口的距离不应超过60m,根据《建规》表3.7.4规定,地下厂房内任一点到最近安全出口的距离为45m。

楼梯间:水电站厂房发电机层以下部分宜设置封闭楼梯间, 根据《建规》第7.4.4条规定,地下室的楼梯间,在首层应采用耐火极限不低于2.00h的不燃烧体隔墙和乙级防火门与其他部位完全隔开, 并应直通室外。

地下厂房的楼梯间宜按照《建规》第7.4.2.1、7.4.3.1条规定要求,按照防烟楼梯间设计。

3水喷雾灭火系统

根据《水规》规定,考虑用水作为灭火介质方便、经济,一般水轮发电机、主变、绝缘油和透平油系统、 大型电缆室、电缆隧道和竖井等部位采用水喷雾灭火装置。系统设备有:火灾自动报警系统、 手动或电动球阀、压力表、喷头、末端试水及管网等。以水轮机水喷雾灭火系统设计为例:应按照《水喷雾灭火系统设计规范》(GB50129-95)要求,在发电机定子上下端各配一圈灭火环管,环管上安装水喷雾喷头,设计喷雾强度13L·min- 1·m- 2, 火灾延续时间应按时间40min计算, 最不利点水雾喷头工作压力不小于0.35MPa , 发生火灾时由火灾自动报警系统探测并自动打开电动球阀启动水喷雾灭火系统灭火,系统反应时间不大于45s,喷头选用离心雾化型水雾喷头, 末端试水在厂内进行,用于日常系统检测。

4火灾自动报警系统

根据电站保护对象的使用性质及火灾危险性的特点, 将报警区域按照防火分区及不同危险区域划分。主厂房、副厂房、开关站,其中一级保护对象有:发电机、变压器、电缆管沟、油罐和油处理室, 其余为二级保护对象。每个报警区域设置一台区域火灾报警控制器, 每个探测区域面积不大于 500m2。火灾自动报警系统划分和配置如表 1所示。

表 1火灾自动报警系统划分和配置

5消防给水系统

水电站消防给水通常有自流供水、水泵供水、消防水池方式。水电站适宜以水库水作为消防水源, 根据建筑体积和《建规》的规定, 确定室外消防用水量和室内消防用水量。在电站上游应设置一座消防水池和补水设施,通过高度差形成常高压消防给水系统, 引两根消防主干管采用环状布置分别向下游厂区和开关站的消火栓系统和水喷雾系统供水。

根据《水规》第9.2.2条规定,当给水设施采用自流供水方式时,取水口不应少于两个,必须在任何情况下保证消防给水。

在厂房周围及其它建筑外、厂房内各层按照《水规》第9.3.2、9.3.3条规定,合理布置消火栓。

6事故排烟系统

地下厂房、封闭厂房、坝内厂房的油浸变压器、油处理室、电缆室等场所应设置独立的排烟系统,不得跨越其他房间。具体按照《水力发电厂房采暖通风与空气调节设计规程》(DL /T5165-2002) 进行设计。疏散走道、楼梯间的排烟可与厂房内排风系统结合。

7建筑防火封堵

在水电站消防设计中,很少有针对不同性质的墙、楼板、井在穿管、开洞时做具体的防火封堵组件设计措施。大多仅在图纸说明中交代几句。没有根据《建筑防火封堵应用技术规程》CECS154:2003对各类孔口、建筑缝隙的不同性质、位置画图进行防火封堵组件设计。因而出现防火封堵材料使用不当,防火封堵组件设计未考虑其结构本身的稳定、开裂、位移及耐久性。

8其他需注意的事项

水电站厂房灭火器配置,应根据《建筑灭火器配置设计规范》GB 50140-2005的规定,确定各灭火器配置场所的火灾种类和危险等级;按照建筑每个防火单元的面积,经计算确定灭火器配置数量和类型。水电站厂房火灾种类一般为固体火灾(A类)、液体火灾(B类)、物体带电燃烧火灾(C类)三种类型。灭火器可选择可扑灭A、B、C类手提式干粉灭火器、卤代烷灭火器或二氧化碳灭火器;消防电源应符合二级负荷要求, 宜自备发电, 电缆布置都不得穿越易燃易爆危险场所。此外, 目前的水电站消防设计规范亟须修订,对水电站的专项消防设计应按最新消防技术规范执行。

五、结束语

水电站消防设计较为复杂,各专业应根据建筑内部功能火灾危险性及建筑空间的特点进行综合分析,根据规范要求,进行合理设计。同时积极引进先进设计理念,采用科技含量高和可靠性、自动化程度高的设施设备,以适应新的形势和经济发展要求。只有这样,才能较好地解决水电站消防设计中存在的问题和矛盾,做到安全适用、经济合理,以达到整个工程的消防安全。

篇4

中图分类号:TV737 文献标识码:A 文章编号:1671—7597(2013)021-103-01

随着水利工程自动化的普及,越来越多新建或更新改造的水利工程都增设了微机监控系统。由于水利工程现场存在着高电压、大电流,加上控制系统集成化程度越来越高,工作电压越来越低,传输的信号电流越来越小,电磁干扰和抗干扰问题日益突出。以下是笔者收集的一些相关的行业规范以及现场施工的经验。由于时间仓促,文中疏漏与瑕疵在所难免,敬请读者批评指正。

1 接地要注意的几点

微机监控系统接地的首选方式是采用公用接地网实行等电位连接方式(公用接地网接地电阻≤1 Ω),因为通过公用接地网实现等电位连接,为干扰(特别是强大的雷电流)提供低阻抗的连续通道并释放到大地中,同时等电位连接减小了系统内各金属部件和各系统间的电位差,无论是从防雷的角度还是从减少施工成本(相对于采用单独接地方式)来看,这都是十分有利的。系统内电气相连的各设备的接地应先引至总接地板,由总接地板以电缆与接地网连接,接地线采用截面积不小于35 mm2的铜线,且要尽量短。金属柜体与底部槽钢(槽钢也是接地网的组成部分)要做良好的焊接及防锈处理。

2 电缆选型及施工的注意点

微机监控系统开关量输入电缆宜选用多芯总屏蔽KVVP型电缆,开关量输出可采用普通控制KVV型电缆。

模拟量(电流、电压、热电阻以及热电偶等信号)数据的准确稳定性对于微机监控系统至关重要,故其传输电缆宜选用RVSPVP型对绞线屏蔽加总屏蔽电缆。对绞线屏蔽层应在中控室PLC控制柜或计算机侧单端接地,总屏蔽层应两端接地。因为单端接地的主要作用是防止低频干扰、而两端接地则是防止高频干扰。

强电与弱电回路、交流与直流回路不应共用同一根电缆。

屏蔽电缆中心导线延伸到屏蔽层之外的部分长度要尽量短。

电缆里的备用芯线可两端接地充当屏蔽线的作用。

安装现场仪表(如:机组转速仪表、振动摆度仪表、技术供水压力仪表、温度仪表等)时其金属外壳尽量选择就近接地,若没有条件就近接地时,可在中控室PLC控制柜或计算机侧接地。避免现场和中控室两侧同时接地,这可能会产生对地的回路。

室外设备(如水位计、流量计等)电缆敷设禁止采用架空方式布线,架空方式最易遭受雷击,可采用金属走线槽、穿金属管直埋或用钢筋混凝土结构的电缆沟敷设。如电缆全程穿金属管有困难时,可在电缆进入终端和前端设备前穿金属管埋地引入,但埋地长度不得小于15 m,在入户端将电缆金属外皮、钢管同接地装置等电位连接。

电缆金属桥架(单层)内部利用金属隔板将信号线路与交流电源线路隔开敷设(或将信号电缆单独敷设在最下面一层电缆架上)。桥架保证良好的电气连接,须在桥架的两端接地,如果桥架距离较长时,建议每隔30 m设一个接地点。不宜采用环氧树脂材质的桥架,因为环氧树脂材质起不到屏蔽的作用。

3 低压系统避雷器选型与安装的注意点

雷电是微机监控系统要面临的强大的干扰源,针对雷电可采用传统的“均压、屏蔽、接闪、分流、接地、保护”防雷措施之外,可加装可靠的浪涌保护器SPD。

SPD的主要参数的选择:最大持续运行电压Uc可取Uc>1.55Uo(Uo为系统额定电压);标称放电电流In的选择应按地区的雷暴雨日多少、地理位置、防护等级、价格等因素而定;电压保护水平Up一般取不大于所保护设备耐压水平的0.8倍;响应时间T,其值越小越好,一般要求小于5 ns,对电源系统可放宽到小于25 ns。

微机监控系统首先要合理的加装电源避雷器,其次是加装信号避雷器等。

户外的前端设备(如摄像机、GPS对时装置及无线传输装置等)应尽量安装在直接雷防护区(LPZOB)内,当其安装高度高于周围10 m范围内的大部分物体高度时,应增加适配的多合一避雷器;当前端设备无法避免必须安装在直接雷非防护区(LPZOA)时,应在其安装支架上安装避雷针。同时必须做好视频线BNC头,电源线,控制线等与避雷针的绝缘,要保证高强度的绝缘。为防止高电位反击设备,应在现场增加适配的多合一避雷器。

另外水利工程现场电磁干扰较大,为提高微机监控系统数据传输的可靠性,提高抗电磁干扰的能力,主干网络宜采用光纤通信。

参考文献

篇5

黑河小孤山水电站工程位于甘肃省肃南裕固族自治县境内,黑河干流大峡谷段下游。工程为长压力隧洞引水式电站,主要由拦河闸坝首部枢纽,发电引水系统,地下厂房,开关站等组成。

1火灾自动报警和控制系统的任务

水电站火灾自动报警和控制系统的任务是对电站主厂房,副厂房及重要机电设备场所的火情,防火排烟设备等进行24h不间断监视,并对房火排烟设备进行相应的控制。

2消防设计依据及设计原则

根据《建筑设计防火规范》(GBJ16-87)(2001年版)、《水利水电工程设计防火规范》(SDJ278-90)、《电力设备典型消防规程》(DL5027-93)及《火灾自动报警系统设计规范》(GB50116-98)的要求,采用“一防、二断、三灭、四排”的综合消防技术措施,尽量减少着火根源,避免火灾发生,万一发生火灾也不致蔓延,并能迅速扑灭,使火灾损失降至最低限度。小孤山水电站火灾自动报警系统采用控制中心集中报警系统。电站内设置手动和自动两种触发报警方式,手动和自动触发并行执行。智能火灾报警控制屏设在中控室内,以便中控室的值班人员在火灾发生时,及时了解火情。

主要生产场所设置智能火灾探测器或手动报警按钮,探测器及手动报警按钮与中控室报警器相联,在发生火灾时传递火警信号至中控室,发出声光报警,现场手动控制灭火。

3火灾自动报警和控制系统的功能

3.1火灾自动报警和控制系统的组成。由于水电站环境条件的特殊性,地下厂房多潮湿,阴暗,强磁场,易燃易爆,普通离子感烟探测器不太适用,所以设计考虑采用了海湾安全技术有限公司的产品,该产品防潮性能好,适合于地下厂房。

火灾自动报警系统由智能火灾报警控制器、光电智能感烟探测器、智能感温探测器、红外对射感烟探测器、缆式线型感温探测器(及接口模块)、手动报警按钮、声光报警器、智能控制模块、智能监视模块、切换模块、总线隔离模块等组成。

在电缆密集处,如开关站电缆沟,电缆桥架,电缆夹层等处,选用缆式线型感温探测器,以正弦波方式均匀缠绕在电缆表面上,使其与被保护电缆多点接触。同时也在屋顶设置感烟探测器,实现双重保护。在高大厂房内,则选用红外对射感烟探测器,它具有监护面积大、灵敏度高、探头数量少、经济合理等特点。重点保护下游机旁盘及励磁盘等主要机电设备。在电站内,中控室、直流屏室、蓄电池室、油处理室等重要机电设备场所则设有感烟探测器、感温探测器、手动报警按钮、声光报警器等,便于值守人员及时通报火情或手动启动灭火设备。发电厂房消火栓内设有消火栓报警按钮,当发生火情时,可用手击碎玻璃,火警信号通过总线自动传输到中控室火灾报警控制柜。

火灾事故照明、疏散指示标志采用蓄电池,应急灯作备用电源,照度不低于0.50lx,可连续供电30min。消防照明线路采用专设消防配电线路。厂房的疏散通道、楼梯、安全出口均设有火灾照明及疏散指示标志。

小孤山水电站主厂房主要采用机械排风、自然进风的通风方式;副厂房也采用自然送风、机械排风的通风方式;厂房水轮机层和蜗壳层采用强制循环通风。

电站通风系统,平时由温湿度控制器现地采集信号传至风机控制柜采用在中控室设置计算机自动控制,根据火灾信号控制风机的启停与防排烟,由于风机运转设备相对较为集中,在风机附近又设置控制箱控制风机的启停,这样运用两套控制系统控制全厂通风系统的运行。另外在通风系统的送、排风管,送、排风口等处均加装自动防烟防火阀或防火排烟阀;风管在穿越防火墙时,均设置防烟防火阀。当火灾发生时,通过控制箱自动(或手动)控制风机的启停和防烟防火阀、防火排烟阀的启闭。

本工程厂区主要建筑物包括地下发电厂房、主变兼尾水闸门室、进厂交通洞、通风出线洞、尾水洞、排水洞等。地面建筑物为开关站。报警控制器用于模拟量智能化可编址二总线火灾报警系统中,配合现场系列火灾探测器及其他现场输入模块,输出模块等可编址部件组成了一个全自动火灾报警及消防联动系统。全厂共分八个层面,每个层面安装一个接线端子箱,且每层的总线隔离器安装在接线端子箱。系统中所有设备均为编码型,安装前应先根据生产厂家提供的电子编码器进行“十进制”编码,检查无误后方可进行调试。

3.2控制系统功能。设置在电站各个部位的火灾探测器,在检测到火情时自动向值班室火灾控制器报警。控制器在接到报警信号后,通过PC软件编程设定的各种联动关系,进行信息处理。在控制器的面板上以液晶显示方式,显示出火情部位。当火情确认后,通过面板上设置的按钮和柜内预制的程序,可自动或由电站值守人员手动对发生火灾部位防烟防火设备,灭火设备进行点对点的控制操作。

通常,报警控制器的控制输出设置在手动位置。当各种火灾探测器或手动报警按钮接收到信号后,立即将信号传输至智能火灾报警控制器,智能火灾报警控制器立即响应,发出声、光报警,并显示时间、地点、报警性质,打印记录,通过输出接口将火灾信号送至计算机监控系统。

正常时,智能火灾报警控制器通过两总线对在线的所有探测部件进行巡回检测,发现有故障时,能发出故障报警信号,显示出时间、编码、区域,并打印出来。报警控制器电源为交流220V,由厂用交流电源供电,当厂用交流电源消失时,可自动切换到逆变电源供电,保证了交流电源供电的可靠性。同时,装置内还设有25Ah的蓄电池作为控制器的备用电源。

4主变压器火警系统

本电站主变压器设3台,水冷油浸式,每台主变压器均设置在专用房间内,变压器安装在铺有卵石阻燃的集油坑上,设3套固定式排油充氮灭火装置。在主变室附近设置事故油池,事故油池总容积约27.50m3。

3台主变压器均采用固定式排油充氮灭火方式,每台变压器设有独立的充氮灭火装置。变压器充氮灭火装置由火灾探测器、控流阀、消防柜、电气控制柜四个部分组成。火灾探测器安装于变压器箱盖顶部强度相对薄弱,容易引起火灾的环节处。控流阀安装于变压器油枕与瓦斯继电器之间,一旦变压器发生火灾时能迅速切断油枕与变压器本体之间的油通路。消防柜内主要有重锤排油机构、重锤充氮阀及高压氮瓶,安装于变压器附近,与变压器本体之间连接有排油管和充氮管。电气控制柜用于运行方式的设定、手/自动切换和起动控制,安装于电站中控室内。

当变压器充氮灭火装置的火灾探测器与瓦斯继电器同时发出动作信号后,快速排油阀立即打开,将油箱中油降低于顶盖下方25cm左右,减轻本体内压力,防止变压器爆炸。关闭控流阀,切断油枕与变压器本体之间的油通路。在排油阀打开数秒后,氮气从变压器底部充入本体,使变压器油上下充分搅拌,迫使油温降至燃点以下迅速灭火,充氮时间持续10min以上,使变压器充分冷却,阻止重燃。

5机组的火警系统

电站的发电机组是由兰州电机厂制造的,机组的火灾探测器和水喷雾灭火设备和数量,设备选型及安装均由电机厂负责设计,安装及成套供货。每台机组构成一个独立的火警监控系统。探测器安装在发电机风罩内,其信号总线通过发电机外壁的接线端子箱接入,通过风罩外电缆桥架接至发电机专用火灾自动报警器,火灾自动报警器安装在中控室火灾控制屏中。当机组发生火灾时,由火灾报警控制器通过开关量输出接点将机组的火情信号,传递到中控室火灾报警控制屏,并由值守人员确认火警部位后再手动启动消防灭火系统。

所以,对于“无人值班(少人值守)”新建的大中型水电站,火灾自动报警的设计可保障水电站安全运行。

参考文献

友情链接